Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + 4x -y2 = 1
=> x2 + 4x - y2 + 4 = 1 + 4 = 5
=> (x2 + 4x + 4) - y2 = 5
=> (x+2)2 - y2 = 5
=> (x+2-y)(x+2+y) = 5
Ta có:
1.5=5
mà x+2-y < x+2+y
=> \(\hept{\begin{cases}\text{x+2-y=1}\\\text{x+2+y}=5\end{cases}}\)=> \(\hept{\begin{cases}x-y=-1\\x+y=3\end{cases}}\)
Từ x-y = -1 => x = y - 1
Thay x = y - 1 vào x + y, ta có:
x + y = y - 1 + y = 3
=> 2y - 1 = 3
=> 2y = 4 => y=2
=> x = 2 - 1 = 2
Vậy x=2; y = 1 thì x2 + 4x -y2 = 1
pt đã cho <=> 2.(2xy-1)2 +(x-y)2 =2
=> 2.(2xy-1)2 nhỏ hơn hoặc bằng 2. lại do x,y nguyên nên hoặc 2.(2xy-1)2=0 hoặc 2.(2xy-1)2=2
Xét \(x=0\Rightarrow y^2=-2y\Leftrightarrow\orbr{\begin{cases}y=0\\y=-2\end{cases}}\)
Xét \(x\ne0\Rightarrow x^2\ge1\)(vì \(x\inℤ\))
\(2x^2-2xy+y^2=2\left(x-y\right)\Leftrightarrow x^2+\left(x^2-2xy+y^2\right)-2\left(x-y\right)=0\)
\(\Leftrightarrow x^2+\left(x-y\right)^2-2\left(x-y\right)=0\)
Vì \(x^2\ge1\)nên \(x^2+\left(x-y\right)^2-2\left(x-y\right)\ge\left(x-y\right)^2-2\left(x-y\right)+1=\left(x-y-1\right)^2\ge0\)
Mà đề yêu cầu giải biểu thức bằng 0 nên ta xét điều kiện xảy ra của dấu "=": \(\hept{\begin{cases}x^2=1\\x-y-1=0\end{cases}}\)
\(\orbr{\begin{cases}x=1,y=0\\x=-1,y=-2\end{cases}}\)
\(\hept{\begin{cases}x^2=1\\x-y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=1\\y=0\end{cases}}\\\hept{\begin{cases}x=-1\\y=-2\end{cases}}\end{cases}}}\)Vậy phương trình nhận 4 nghiệm (x;y)=(0;0),(0;-2),(1;0),(-1;-2).
Ta luôn có \(y^3>x^3\left(x;y\in Z\right)\left(1\right)\)
Xét \(\left(x+2\right)^3-y^3=x^3+6x^2+12x+8-x^3-x^2-x-1\)
\(=5x^2+11x+7=5\left(x^2+2.\frac{11}{10}x+\frac{121}{100}\right)+\frac{19}{20}\)
\(=5\left(x+\frac{11}{10}\right)^2+\frac{19}{20}>0\forall x\left(2\right)\)
Từ (1) và (2) \(\Rightarrow y^3=\left(x+1\right)^3\Leftrightarrow x^3+x^2+x+1=x^3+3x^2+3x+1\)
\(\Leftrightarrow2x^2+2x=0\Leftrightarrow2x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)Đến Đây thay vào tìm y là xong