K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2020

Với y nguyên thì \(2y^2-1\ne0\), Từ phương trình đề cho suy ra 

\(x=\frac{y^4}{2y^2-1}\). Để x nguyên thì :

\(y^4⋮2y^2-1\)

\(\Leftrightarrow8y^4⋮2y^2-1\)

\(\Leftrightarrow2.\left(4y^4-1\right)+2⋮2y^2-1\)

\(\Leftrightarrow2\left(2y^2-1\right)\left(2y^2+1\right)+2⋮2y^2-1\)

\(\Leftrightarrow2y^2-1\inƯ\left(2\right)=\left\{-1,1,-2,2\right\}\)

\(\Leftrightarrow2y^2\in\left\{0,2,-1,3\right\}\)

\(\Leftrightarrow y\in\left\{0,1,-1\right\}\) ( Do y nguyên )

Với \(y=0\Rightarrow x=0\)

Với \(y=1\Rightarrow x=1\)

Với \(y=-1\Rightarrow x=1\)

13 tháng 2 2018

MÌnh nghĩ thế này ko bt đúng ko

Ta có: \(\hept{\begin{cases}x^2+1\ge2x\\x^2+y^2\ge2xy\end{cases}}\)

\(\Rightarrow\left(x^2+1\right)\left(x^2+y^2\right)\ge4x^2y\)

\(\Rightarrow\left(x^2+1\right)\left(x^2+y^2\right)-4x^2y\ge0\)

Dấu = xảy ra khi x=y=1

Vậy (x;y)=(1;1)

13 tháng 2 2018

Ta có pt \(\Leftrightarrow\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)

Áp dụng BĐt cô-si , ta có 

\(x^2+1\ge2\sqrt{x^2}=2x;x^2+y^2\ge2xy\)

Nhân vào, ta có \(\left(x^2+1\right)\left(y^2+x^2\right)\ge4x^2y\)

Dấu = xảy ra <=> x=y=1 

^_^ 

5 tháng 3 2019

Bạn chú ý x;y là số nguyên dương, như thế hiển nhiên ta sẽ có x+y>x−(y+6) nhưng mà theo điều giả sử x≥y+6  nên x−(y+6)≥0 với mọi x,y

Lai do x,y nguyên dương nên x+y≥1 Như vậy hiển nhiên là (x+y)^3>(x−y−6)^2 nên pt vô nghiệm

5 tháng 3 2019

https://diendantoanhoc.net/topic/113122-gi%E1%BA%A3i-ph%C6%B0%C6%A1ng-tr%C3%ACnh-nghi%E1%BB%87m-nguy%C3%AAn-d%C6%B0%C6%A1ng-xy3x-y-62/

30 tháng 10 2019

Nguyễn Linh Chi : cô làm cách đó là thiếu nghiệm rồi cô

\(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)

\(\Leftrightarrow x^4+x^2+x^2y^2+y^2-4x^2y=0\)

\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-2x^2y+x^2y^2\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)^2+\left(x\left(y-1\right)\right)^2=0\)

\(\Leftrightarrow x^2-y=x\left(y-1\right)=0\)

\(\Leftrightarrow x^2-y-xy+x=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-1\end{cases}}\)

+) x = -1 suy ra y = 1

+) x = y . từ đó tìm được \(\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)

30 tháng 10 2019

ai tích mình sai vậy ạ, xin lí do

3 tháng 4 2020

                                                                     Giải

5 = x2y2 + ( x-2) 2 + ( 2y-2)2 -2xy(x + 2y -4 )

    = [ x.y - ( x + 2.y -4 ) ] 2 - 2 ( y - 1 ) ( x - 2  ) 

    = ( xy - x - 2y + 4 )2 -4.( xy - x - 2y + 2 )

    = A2  - 4 ( A - 2 )

    <=> A2 - 4.A + 3 = 0

    <=>   \(\orbr{\begin{cases}xy-x-2y+4=3\\xy-x-2y+4=1\end{cases}}\)

Lưu ý : đặt : A = xy - x - 2y + 4 

TH1 : xy - x - 2.y + 4  = 3 

<=> xy - x - 2y + 1        = 0 

<=> x.( y  - 1 ) - 2.(y-1 ) = 1

<=> ( x - 2 )  (  y - 1 ) = 1 

Ta có bảng : 

x-21-1
 y - 1 1-1
3-1
y20

TH2 : xy - x - 2y + 4 = 1 

<=> ( x- 2 ) . ( y -1 ) =-1 

x-2 -11
y - 11-1
 x   -13
  20