K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 2 2022

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)=4\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

\(\Rightarrow\left(y+1\right)^2\le4\Rightarrow\left[{}\begin{matrix}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{matrix}\right.\)

\(\Rightarrow y=\left\{-1;-3;1\right\}\)

Thế vào pt ban đầu tìm x nguyên tương ứng

18 tháng 2 2022

\(x^2+5y^2+2y-4xy-3=0\left(1\right)\\ \Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\\ \Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Ta có: \(\left(x-2y\right)^2+\left(y+1\right)^2=4\ge\left(y+1\right)^2\)

Mà \(y\in Z\Rightarrow\left(y+1\right)^2\in Z\Rightarrow\left(y+1\right)^2\in\left\{0;1;4\right\}\)

Với \(\left(y+1\right)^2=0\Rightarrow y+1=0\Rightarrow y=-1\)

Thay y=-1 vào pt (1) ta tìm được \(\left\{{}\begin{matrix}x=-4\\x=0\end{matrix}\right.\)

Với \(\left(y+1\right)^2=1\Rightarrow\left[{}\begin{matrix}y+1=1\\y+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=-2\end{matrix}\right.\)

Thay y=0 vào pt (1) ta không tìm được x nguyên 

Thay y=-2 vào pt (1) ta không tìm được x nguyên 

Với \(\left(y+1\right)^2=4\Rightarrow\left[{}\begin{matrix}y+1=-2\\y+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-3\\y=1\end{matrix}\right.\)

Thay y=-3 vào pt (1) tìm được \(x=-6\)

Thay y=1 vào pt (1) tìm được \(x=2\)

AH
Akai Haruma
Giáo viên
14 tháng 1

Lời giải:
$x^2+5y^2+4xy=2023$
$\Leftrightarrow (x^2+4y^2+4xy)+y^2=2023$

$\Leftrightarrow (x+2y)^2+y^2=2023$

Ta biết rằng 1 scp khi chia cho $4$ dư $0$ hoặc $1$

Tức là $(x+2y)^2\equiv 0,1\pmod 4$ và $y^2\equiv 0,1\pmod 4$

$\Rightarrow (x+2y)^2+y^2\equiv 0,1,2\pmod 4$

Mà $2023\equiv 3\pmod 4$

Do đó không tồn tại $x,y$ nguyên để $(x+2y)^2+y^2=2023$

18 tháng 8 2019

\(4x^2+4y-4xy+5y^2+1=0\)

\(\Leftrightarrow\left(2x-y\right)^2+\left(2y+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{4}\\y=-\frac{1}{2}\end{cases}}\)

26 tháng 10 2017

x^2 +5y^2 -4xy +2x +4 =0

x^2 +4y^2 -4xy +y^2 +4y+4 +2x -4y =0

(x -2y)^2 +2(x-2y)+(y+2)^2 =0

(x-2y+1)^2 +(y+2)^2 =1

do x,y nguyên nên x-2y+1; y+2 nguyên 

mà (x-2y+1)^2 ;(y+2)^2 lơn hơn hoặc bằng 0 với mọi x,y

nên ta có 2TH

TH1: (x-2y+1)^2 =1 ;(y+2)^2 =0

TH2: (x-2y+1)^2 =0 ;(y+2)^2 =1

bạn tự giải doạn cuối nhé

k cho mình nhé

\(x^2-4xy+4y^2+y^2+2xy+1-4\)

\(\left(x-2y\right)^2+\left(y+1\right)^2-4\)   > -4

Dấu = xảy ra khi \(\hept{\begin{cases}x-2y=0\\y+1=0\end{cases}< =>\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)

a, x2+5y2+2y-4xy-3=0

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Nếu \(y< -3\Rightarrow y+1< -2\Rightarrow\left(y+1\right)^2>4\Rightarrow VT>VP\)(vô lí)

\(\Rightarrow y\ge-3\Rightarrow y_{min}=-3\)

lúc đó \(\left(x+6\right)^2+4=4\Rightarrow x=-6\)

Vậy.................

5 tháng 3 2020

a) \(x^2+5y^2+2y-4xy-3=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Ta thấy : \(4=0+4\) là tổng hai số chính phương

Thử các giá trị \(\orbr{\begin{cases}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{cases}}\)

Ta thấy : \(y=-3\) đạt giá trị nhỏ nhất.

Khi đó : \(x^2+5.\left(-3\right)^2+2\left(-3\right)-4x\left(-3\right)-3=0\)

\(\Leftrightarrow x=-6\)

Vậy : \(\left(x,y\right)=\left(-6,-3\right)\) với y nhỏ nhất thỏa mãn đề.

P/s : Không chắc lắm ....

2 tháng 12 2019

\(x^2+5y^2+2y-4xy-3=0.\)

\(\Rightarrow x^2-4xy+4y^2+y^2+2y-3=0\)

\(\Rightarrow\left(x-2y\right)^2+\left(y+1\right)^2-4=0\)

Vậy cặp số x,y nhỏ nhất thỏa mãn là \(\hept{\begin{cases}x-2y=0\\y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x-2y=0\\y=-1\end{cases}\Rightarrow}\hept{\begin{cases}x+2=0\\y=-1\end{cases}}}\)

\(\Rightarrow x=-2;y=-1\)

\(x^2+5y^2+2y-4xy-3=0\)

=> \(\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)

=> \(\left(x-2y\right)^2+\left(y+1\right)^2-2^2=0\)

=> \(\left(x-2y\right)^2+\left(y+1-2\right)\left(y+1+2\right)=0\)

=> \(\left(x-2y\right)^2+\left(y-1\right)\left(y+3\right)=0\)

Mà   \(\left(x-2y\right)^2 \ge 0 \forall x\) 

=> \(\left(y-1\right)\left(y+3\right)\le0\)   Mặt khác \(y-1 < y+3 \)

=> \(\hept{\begin{cases}y-1\le0\\y+3\ge0\end{cases}}\)=> \(-3\le y\le1\)  mà y nhỏ nhất 

=> \(y=-3\)

Thay vào biểu thức, ta có \(\left(x+6\right)^2+\left(-3-1\right)\left(-3+3\right)=0\) => \(\left(x+6\right)^2=0\)  => \(x+6=0\) => \(x=-6\)

    Vậy x=-6 , y=-3

DD
15 tháng 7 2021

a) \(xy+3x-2y-7=0\)

\(\Leftrightarrow x\left(y+3\right)-2y-6=1\)

\(\Leftrightarrow\left(x-2\right)\left(y+3\right)=1\)

mà \(x,y\)nguyên nên \(x-2,y+3\)là ước của \(1\)nên ta có bảng giá trị: 

x-21-1
y+31-1
x3-1
y-2-4

Vậy phương trình có nghiệm là: \(\left(3,-2\right),\left(-1,-4\right)\).

b) \(5y-2x^2-2y^2+2=0\)

\(\Leftrightarrow16x^2+16y^2-40y-16=0\)

\(\Leftrightarrow\left(4x\right)^2+\left(4y-5\right)^2=41\)

Vì \(x,y\)nguyên nên \(\left(4x\right)^2,\left(4y-5\right)^2\)là các số chính phương.

Phân tích \(41\)thành tổng hai số chính phương có cách duy nhất bằng \(41=16+25\)

mà \(\left(4x\right)^2⋮16\)nên ta có: 

\(\hept{\begin{cases}\left(4x\right)^2=16\\\left(4y-5\right)^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)(vì \(y\)nguyên)

26 tháng 9 2016

k mk nha

7 tháng 11 2019

\(x^2-4xy+5y^2=2\left(x-y\right)\)

\(\left(x-2y\right)^2-2\left(x-2y\right)+1+y^2-2y+1=2\)

\(\left(x-2y-1\right)^2+\left(y-1\right)^2=1^2+1^2\)

\(\left(x-2y-1\right)^2=1\)

\(\left(y-1\right)^2=1\)

\(y-\left(1^2-1\right)\)

\(y=2\left|x=1\right|\)

Hmmm....không chắc há cậu mik làm kiểu cô giao nên không có 4 đâu hem :)))) ???

:)