Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(2y+3\right)=y+1\)
\(x\left(2y+2\right)=y\)
\(\Rightarrow x\left(y+2\right)\)
\(\Rightarrow72\)
Suy ra, biểu thức có 72 cặp số thỏa mãn
<=> x(y+2)=y+5
=> x=\(\frac{y+5}{y+2}=\frac{y+2+3}{y+2}=1+\frac{3}{y+2}\)
=> để x nguyên thì 3 phải chia hết cho y+2.
=> +/ y+2=1 => y=-1 => x=1+3=4
+/ y+2=3 => y=1 => x=1+1=2
xy+2x-y=5
=> x(y+2) - y -2 = 5-2
=> x(y+2) - (y+2) = 5 - 2
=> (y+2)(x-1) = 3
do x, y thuộc Z => y+2 và x-1 thuộc Z
=> y+2 và x-1 thuộc Ư(3)={1,-1,-3,3}
LẬP BẢNG y + 2 x - 1 x y -1 1 -3 3 -3 3 -1 1 -2eZ 4eZ 0eZ 2e Z -3eZ -1eZ -5eZ 1eZ
chú ý: e là thuộc nhé
Vậy (x,y) e {(-2;-3);(4;-1);(0;-5);(2;1)}
chúc bạn học giỏi
chắc chắn 100% đó
tk nha
a, (x+1)×(y+3)=5
=> x+1 và y+3 \(\in\) Ư(5) = {-1;-5;1;5}
ta có bảng sau :
x+1 | -1 | -5 | 1 | 5 |
y+3 | -5 | -1 | 5 | 1 |
x | -2 | -6 | 0 | 4 |
y | -8 | -4 | 2 | -2 |
vậy các cặp số (x;y) thỏa mãn là : (-2; -8); (-6; -4); (0; 2); (4; -2)
b, ko bt làm!
c, x2 + xy + y = 22
=> x.x + xy + y = 22
=> x(x+y) + x + y = 22 + y
=> x(x+y) + 1(x+y) = 22 + y
bí ròi
\(xy+4x+y=3\)
\(\Leftrightarrow x\left(y+4\right)+\left(y+4\right)=7\)
\(\Leftrightarrow\left(x+1\right)\left(y+4\right)=7\)
Vì x ; y nguyên nên x + 1 nguyên , y + 4 nguyên
Ta có bảng
x + 1 | -7 | -1 | 1 | 7 |
y + 4 | -1 | -7 | 7 | 1 |
x | -8 | -2 | 0 | 6 |
y | -5 | -11 | 3 | -3 |
Vậy ,.............
\(xy+4x+y=3\)
\(\Rightarrow x\left(y+4\right)+\left(y+4\right)=3+4\)
\(\Rightarrow\left(x+1\right)\left(y+4\right)=7\)
\(\Rightarrow\left(x+1\right);\left(y+4\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có các trường hợp sau
\(TH1:\hept{\begin{cases}x+1=1\\y+4=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=3\end{cases}}}\) \(TH2:\hept{\begin{cases}x+1=-1\\y+4=-7\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-11\end{cases}}}\)
\(TH3:\hept{\begin{cases}x+1=7\\y+4=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=-3\end{cases}}}\) \(TH4:\hept{\begin{cases}x+1=-7\\y+4=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=-5\end{cases}}}\)
Vậy\(\left(x;y\right)\in\left\{\left(0;3\right);\left(-2;-11\right);\left(6;-3\right);\left(-8;-5\right)\right\}\)
Do x,y thuộc Z
a)(x+1)(y-2)=2=1.2=(-1).(-2)
Thay lần lượt có 4 cặp nhé
b)(3-x)(xy+y)=1=1.1=(-1).(-1)
*)3-x=1 và xy+y=1
=>x=2 và y(x+1)=1=1.1=>y= x=0(L vì x nhận 2 giá trị khác nhau)
*)3-x=-1 và xy+y=-1
<=>x=4 và y(x+1)=-1 giải ra thì TH này cũng bị loại
Bài 1:
Vì x > y > 0 nên x và y đều là số tự nhiên. Khi x, y thuộc tập hợp N, ta có |x| - |y| = x - y.
Trong trường hợp này ta có |x| -|y| = x - y = 100. Vậy x - y = 100.
xy + 4x + y = 3
x . (y + 4) + y = 3
x . (y + 4) + (y + 4) = 7
(y + 4) . (x + 1) = 7
TC x,y e Z và y + 4 ; x + 1 e U(7) = {+1; +7}
TC bảng sau
Vậy (x,y) e (-5; -8) ; (-11; -2) ; (-3; 6) ; (3; 0)
sai mong bạn thông cảm
HT
xy+4x+y=3xy+4x+y=3
⇒x(y+4)+(y+4)=3+4⇒x(y+4)+(y+4)=3+4
⇒(x+1)(y+4)=7⇒(x+1)(y+4)=7
⇒(x+1);(y+4)∈Ư(7)={±1;±7}⇒(x+1);(y+4)∈Ư(7)={±1;±7}
Ta có các trường hợp sau
TH1:\hept{x+1=1y+4=7⇔\hept{x=0y=3TH1:\hept{x+1=1y+4=7⇔\hept{x=0y=3 TH2:\hept{x+1=−1y+4=−7⇔\hept{x=−2y=−11TH2:\hept{x+1=−1y+4=−7⇔\hept{x=−2y=−11
TH3:\hept{x+1=7y+4=1⇔\hept{x=6y=−3TH3:\hept{x+1=7y+4=1⇔\hept{x=6y=−3 TH4:\hept{x+1=−7y+4=−1⇔\hept{x=−8y=−5TH4:\hept{x+1=−7y+4=−1⇔\hept{x=−8y=−5
Vậy(x;y)∈{(0;3);(−2;−11);(6;−3);(−8;−5)}