Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x2y - x2 -2y - 2 = 0
=>2x2y-x2-2y+1 = 3
=>(2x2y-x2)-(2y-1)=3
=>x2(2y-1)-(2y-1)=3
=>(x2-1)(2y-1)=3
=>x2-1 và 2y-1 thuộc Ư(3)={3;1;-1;-3}
Xét x2-1=3 =>x2=4 =>x=±2 =>2y-1=1 =>y=1
Xét x2-1=1 =>x2=2 (Loại vì x,y nguyên)
Xét x2-1=-1 =>x2=0 =>x=0 =>2y-1=-3 =>y=-1
Xét x2-1=-3 =>x2=-2 (Loại vì bình phương 1 số luôn \(\ge\)0>-2)
Vậy với x=±2 thì y=1 với x=0 thì y=-1
⇔2x2−x+1=xy+2y⇔2x2−x+1=xy+2y
⇔2x2−x+1=y(x+2)⇔2x2−x+1=y(x+2)
⇔y=2x2−x+1x+2=2x−5+11x+2⇔y=2x2−x+1x+2=2x−5+11x+2
Do y nguyên ⇒11x+2⇒11x+2 nguyên ⇒x+2=Ư(11)⇒x+2=Ư(11)
Mà x nguyên dương ⇒x+2≥3⇒x+2=11⇒x=9⇒x+2≥3⇒x+2=11⇒x=9
⇒y=14⇒y=14
Vậy (x;y)=(9;14)
Ta có :
\(2x^2y-x^2-2y-2=0\)
\(\Leftrightarrow\)\(2x^2y-x^2-2y+1-3=0\)
\(\Leftrightarrow\)\(x^2\left(2y-1\right)-\left(2y-1\right)=3\)
\(\Leftrightarrow\)\(\left(x^2-1\right)\left(2y-1\right)=3\)
Đến đây xét các trường hợp ra nhá :')
a, x.( y + 2 ) = -8
Ta có bảng sau :
x | 1 | -1 | 8 | -8 | 2 | -2 | 4 | -4 |
y + 2 | -8 | 8 | -1 | 1 | -4 | 4 | -2 | 2 |
y | -10 | 6 | -3 | -1 | -6 | 2 | -4 | 0 |
Bạn tự kết luận nha !
b, xy - 2x - 2y = 0
x.( y - 2 ) - 2y - 4 = -4
x.( y - 2 ) - 2.( y - 2 ) = -4
( x - 2 ) . ( y - 2 ) = -4
Ta có bảng sau :
x – 2 | -1 | 1 | -4 | 4 | 2 | -2 |
y - 2 | 4 | -4 | 1 | -1 | -2 | 2 |
x | 1 | 3 | -2 | 6 | 4 | 0 |
y | 6 | -2 | 3 | 1 | 0 | 4 |
Bạn tự kết luận nha !
#Học tốt#
Vì x,y nguyên suy ra x và y+2 nguyên
nên x và y+2 thuộc ước nguyên của (-8)
Ta có bảng sau
x | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
y+2 | -8 | 8 | -4 | 4 | -2 | 2 | -1 | 1 |
y | -10 | 6 | -6 | 2 | -4 | 0 | -3 | -1 |
Tự kết luận nhé
b) x.(y-2) - 2.(y-2) =4
hay (x-2).(y-2) = 4
Làm tương tự như trên nhé
Vì \(x;y\inℤ\Rightarrow\hept{\begin{cases}3-x\inℤ\\2y-2\inℤ\end{cases}}\)
mà 4 = 2.2 = (-2) . (-2) = 1.4 = (-1).(-4)
Lập bảng xét 6 trường hợp ta có :
\(3-x\) | \(1\) | \(4\) | \(2\) | \(-2\) | \(-1\) | \(-4\) |
\(2y-2\) | \(4\) | \(1\) | \(2\) | \(-2\) | \(-4\) | \(-1\) |
\(x\) | \(2\) | \(-7\) | \(1\) | \(5\) | \(4\) | \(7\) |
\(y\) | \(3\) | \(\frac{3}{2}\) | \(2\) | \(0\) | \(-1\) | \(\frac{1}{2}\) |
Vậy các cặp (x;y) thỏa mãn là : (2;3) ; (1;2) ; (5;0) ; (4;-1)
\(\left(3-x\right)\left(2y-2\right)=4\)
\(\Rightarrow2\left(3-x\right)\left(y-1\right)=4\)
\(\Rightarrow\left(3-x\right)\left(y-1\right)=2\)
TH1 : \(\hept{\begin{cases}3-x=1\\y-1=2\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}}\)
Th2 : \(\hept{\begin{cases}3-x=2\\y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}}\)
TH3 : \(\hept{\begin{cases}3-x=-1\\y-1=-2\end{cases}\Rightarrow\hept{\begin{cases}x=4\\y=-1\end{cases}}}\)
TH4 : \(\hept{\begin{cases}3-x=-2\\y-1=-2\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
\(\left(x-3\right)\left(x-12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}\)
\(\Rightarrow x\in\left\{3;12\right\}\)
\(\left(x^2-81\right)\left(x^2+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-81=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x\in\varnothing\end{cases}}\Leftrightarrow x=9\)
\(\Rightarrow x=9\)
\(\left(x-4\right)\left(x+2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-4\\x+2\end{cases}}\)trái dấu
\(TH1:\hept{\begin{cases}x-4>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)
\(TH2:\hept{\begin{cases}x-4< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)
Vậy \(x\in\left\{-1;0;1;2;3\right\}\)
Mình chỉ làm được câu a thôi,bạn hãy thử lại nhé
a.(2n+5) chia hết cho (n-1)
Ta có :2n+5=2n-1+6
Vì 2n-1 chia hết cho n-1 =>2n-1+6 chia hết cho n-1 khi 6 chia hết cho n-1
=>n-1 thuộc Ư(6)
Mà Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n-1 thuộc{-1;1;-2;2;-3;3;-6;6}
Ta có bảng giá trị sau :
n-1 | -1 | 1 | -2 | 2 | -3 | 3 | -6 | 6 |
n | 0 | 2 | -1 | 3 | -2 | 4 | -5 | 7 |
Vậy n thuộc {0;2;-1;3;-2;4;-5;7}
HÌNH NHƯ BỊ SAI KẾT QUẢ NHƯNG MÌNH CHẮC CHẮN CÁCH LÀM