Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt :
\(2x^6-2x^3y+y^2=320\Leftrightarrow x^6+\left(x^6-2x^3y+y^2\right)=320\)
\(\Leftrightarrow x^6+\left(x^3-y\right)^2=320\)
=> \(x^6\le320\Leftrightarrow-2\le x\le2\)
TH1: Nếu \(x=-2\Rightarrow x^6=64\Rightarrow\left(x^3-y\right)^2=320-64=256\Rightarrow\orbr{\begin{cases}x^3-y=-16\\x^3-y=16\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=x^3+16=\left(-2\right)^3+16=8\\y=x^3-16=\left(-2\right)^3-16=-24\end{cases}}\)
TH2: Nếu \(x=2\Rightarrow x^6=64\Rightarrow\left(x^3-y\right)^2=320-64=256\Rightarrow\orbr{\begin{cases}x^3-y=-16\\x^3-y=16\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=x^3+16=2^3+16=24\\y=x^3-16=2^3-16=-8\end{cases}}\)
TH3: Nếu \(\orbr{\begin{cases}x=-1\\x=1\end{cases}}\Rightarrow x^6=1\Rightarrow\left(x^3-y\right)^2=320-1=319\) (vô nghiệm nguyên)
TH4: Nếu \(x=0\Rightarrow x^6=0\Rightarrow\left(x^3-y\right)^2=320\)(vô nghiệm nguyên)
Vậy pt có nghiệm (x,y)=...
mk hc nghu lém mk giải ko dc nhưng cho mk xin nha mấy bn yêu mấy bn nh`
a.
\(x^2-4xy=23\)
\(\Leftrightarrow x\left(x-4y\right)=23\)
Ta co:
\(23=1.23=23.1=\left(-1\right).\left(-23\right)=\left(-23\right).\left(-1\right)\)
TH1:
\(\left\{{}\begin{matrix}x=1\\x-4y=23\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\frac{11}{2}\end{matrix}\right.\)(loai)
TH2:
\(\left\{{}\begin{matrix}x=23\\x-4y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=23\\y=\frac{11}{2}\end{matrix}\right.\)(loai)
TH3:
\(\left\{{}\begin{matrix}x=-1\\x-4y=-23\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\frac{11}{2}\end{matrix}\right.\)(loai)
TH4:
\(\left\{{}\begin{matrix}x=-23\\x-4y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-23\\y=-\frac{11}{2}\end{matrix}\right.\)(loai)
Vay khong co ngiem nguyen nao thoa man phuong trinh
\(x^2\) có chữ số tận cùng có thể là : 0;1;4;6;9
\(2y^2\)có chữ số tận cùng có thể là : 0 ;2;8
Vậy \(x^2+2y^2\)có chữ số tận cùng 7 => \(x^2\)có chữ số tận cùng là 9 và \(2y^2\)có chữ số tận cùng là 8 nên y2 có tận cùng là 4
=> y có tận cùng là 2 hoặc 8
\(2y^2\)< 2377 => \(y\)< 35
=> y \(\in\){2;8;12;18;22;28;32}
Thay y lần lượt các giá trị trên vào đề bài để tìm x .
Bạn làm tiếp nha.
cho day so Un duoc xac dinh boi U1=2,U2=1,Un=2=nUn+1-3Un+n2-2.tinh U15 va tinh tong cua 16 so hang dau tien cua day
Ta có:
\(x^2y^2-2x\left(y+2\right)+4=0\)
\(\Leftrightarrow x^2y^2-2xy+4=4x\)
\(\Leftrightarrow\left(xy-1\right)^2+3=4x\)
Mà \(\left(xy-1\right)^2+3>0\)
Nên 4x>0
x>0
Ta có:
\(x^2y^2-2x\left(y+2\right)+4=0\)
\(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)
Mà \(x^2y^2+4>0\forall x,y\)
Nên \(2x\left(y+2\right)>0\)
Mặt khác x>0
nên y+2>0
=> y>-2 (1)
Áp dụng bđt Cosi ta có:
\(x^2y^2+4\ge4xy\)
Mà \(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)
Nên \(2x\left(y+2\right)\ge4xy\)
\(\Rightarrow y+2\ge2y\)
\(\Leftrightarrow y\le2\) (2)
Do y \(\in Z\) và ta đã có (1), (2)
Nên \(y\in\left\{-1;0;1;2\right\}\)
Th1: y = -1
\(\Rightarrow x^2-2x\left(-1+2\right)+4=0\)
\(\Leftrightarrow x^2-2x+4=0\)
\(\Leftrightarrow\left(x-1\right)^2+3=0\left(vl\right)\)
Th2: y = 0
\(\Rightarrow x^2-2x\left(0+2\right)+4=0\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Rightarrow x=2\) (nhận)
Th3: y = 1
\(\Rightarrow x^2-2x\left(1+2\right)+4=0\)
\(\Leftrightarrow x^2-6x+4=0\)
\(\Leftrightarrow\left(x-3\right)^2=5\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=-\sqrt{5}+3\end{matrix}\right.\)
Loại do x \(\in Z\)
Th4: y = 2
\(\Rightarrow x^2-2x\left(2+2\right)+4=0\)
\(\Leftrightarrow x^2-8x+4=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{12}+3\\x=-\sqrt{12}+3\end{matrix}\right.\)
Loại do x \(\in Z\)
Vậy \(\left(x;y\right)\in\left\{2;0\right\}\)