Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]
Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]
Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]
Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]
Ta có xy=3(y-x) => xy+3x-3y=0
=> x(y+3)-3y=0=> (x-3).(y+3)=-9
=> (x-3).(y+3)=-1.9=-3.3=-9.1=1.(-9)=3.(-3)=9.(-1)
=> x=2;0;-6;4;6;12
y=6;0;-2;-12;-6;-4
vì (x;y) là cặp số nguyên dương x=-2 và y=12 loại
Vấy x có hai giá trị (2;0) tương ứng với hai giá trị của y ( 6;0)
xy -x - y =2
x.( y-1) = 2+ y
\(x=\frac{2+y}{y-1}=\frac{y-1+3}{y-1}=\frac{y-1}{y-1}+\frac{3}{y-1}=1+\frac{3}{y-1}\)
Để x nguyên
\(\Rightarrow\frac{3}{y-1}\in z\Rightarrow3⋮y-1\Rightarrow y-1\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)
nếu y- 1 = 3 => y =4 (TM) => x = 1+ 3/4-1 = 1 + 1 =2 => x= 2 (TM)
y-1 =-3 => y =-2 (TM) => x = 1+ 3/-2-1 = 1+(-1) =0 => x =0 (TM)
y -1 = 1 => y=2 (TM) => x = 1+ 3/2-1 = 1+3 =4 => x =4 (TM)
y-1 =-1 => y=0 (TM) => x = 1+ 3/0-1 = 1+(-3) = -2 => x = -1 (TM)
KL: (x;y) =........................................
Chúc bn học tốt !!!!!
Trả lời
\(\frac{x-1}{4}-\frac{1}{y+3}=\frac{1}{2}\)
\(\Rightarrow\frac{x-1}{4}-\frac{1}{2}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-1}{4}-\frac{2}{4}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-1-2}{4}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-3}{4}=\frac{1}{y+3}\)
\(\Rightarrow\left(x-3\right)\left(y+3\right)=4\)
Vì \(x,y\inℕ\)\(\Rightarrow x-3;y+3\inℕ\)
\(\Rightarrow x-3;y+3\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Ta có bảng giá trị
x-3 | 1 | 2 | 4 |
y+3 | 4 | 2 | 1 |
x | 4 | 5 | 7 |
y | 1 | -1 | -2 |
Đối chiếu điều kiện \(x,y\inℕ\)
Vậy \(\left(x;y\right)\in\left\{\left(4;1\right)\right\}\)
Bài này dễ mà!
Có: \(xy+2x=27-3y\)
\(x\left(y+2\right)=33-3\left(y+2\right)\)
\(x\left(y+2\right)+3\left(y+2\right)=33\)
\(\left(x+3\right)\left(y+2\right)=33\)
Đến phần này chắc bạn tự làm đc rồi nhỉ
\(xy+x-y=4\)
\(x\left(y+1\right)-\left(y+1\right)=4-1\)
\(\left(x-1\right)\left(y+1\right)=3\)
\(\Rightarrow x-1;y+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng :
cảm ơn bạn