K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2018

Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1). 
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

9 tháng 10 2018

 Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

15 tháng 7 2016

\(xy+x-y=4\)

\(x\left(y+1\right)-\left(y+1\right)=4-1\)

\(\left(x-1\right)\left(y+1\right)=3\)

\(\Rightarrow x-1;y+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Ta có bảng :

x-1-3 -1 1  3  
x  -2024
y+1-1-331
y-2-420
15 tháng 7 2016

cảm ơn bạn

9 tháng 4 2017

bài này gần như là của lớp 6

28 tháng 11 2017

đúng nhưng đây đã nâng cao hơn và cx là dạng bồi giỏi của lớp 7

tui nhớ hình như là vậy

5 tháng 3 2016

36x=3.12.x chia hết cho 3(1)

75y=3.25.y chia hết cho 3(2)

từ (1);(2)=>36x+75 chia hết cho 3

Mà 36x+75y=136=>136 cũng phải chia hết cho 3,nhưng 136 ko chia hết cho 3.Mâu thuẫn!

Vậy số cặp (x;y) thỏa mãn là 0

5 tháng 3 2016

tôi làm rồi.có 0 cặp (x;y)

4 tháng 5 2018

Trả lời

\(\frac{x-1}{4}-\frac{1}{y+3}=\frac{1}{2}\)

\(\Rightarrow\frac{x-1}{4}-\frac{1}{2}=\frac{1}{y+3}\)

\(\Rightarrow\frac{x-1}{4}-\frac{2}{4}=\frac{1}{y+3}\)

\(\Rightarrow\frac{x-1-2}{4}=\frac{1}{y+3}\)

\(\Rightarrow\frac{x-3}{4}=\frac{1}{y+3}\)

\(\Rightarrow\left(x-3\right)\left(y+3\right)=4\)

Vì \(x,y\inℕ\)\(\Rightarrow x-3;y+3\inℕ\)

\(\Rightarrow x-3;y+3\inƯ\left(4\right)=\left\{1;2;4\right\}\)

Ta có bảng giá trị

x-3124
y+3421
x457
y1-1-2

Đối chiếu điều kiện \(x,y\inℕ\)

Vậy \(\left(x;y\right)\in\left\{\left(4;1\right)\right\}\)

8 tháng 3 2016

0 cặp nha bạn

8 tháng 3 2016

0 vì phải chia hết cho 3, 136 ko chia hết cho 3

30 tháng 4 2015

vi x, y la nguyen duong nen ta thay lan luot x tư 1 den 6

tim ra cap x=3, y =4

va y=3, x=4

20 tháng 1 2019

bạn chưa hiểu được chưa hiểu mk bày từ từ