K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2018

a, Ta có \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

(=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)

(=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)

(=) \(\left(b-a\right).\left(a-b\right)=ab\)

Vì a,b là 2 số dương

=> \(\hept{\begin{cases}ab>0\left(1\right)\\\left(b-a\right).\left(a-b\right)< 0\left(2\right)\end{cases}}\) 

Từ (1) và (2) => Không tồn tại hai số a,b để \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

14 tháng 11 2018

b, Cộng vế với vế của 3 đẳng thức ta có :

\(x+y+y+z+x+z=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)

(=) \(2.\left(x+y+z\right)=-\frac{5}{6}\)

(=) \(x+y+z=\frac{-5}{12}\)

Ta có : \(x+y+z=\frac{-5}{12}\left(=\right)-\frac{7}{6}+z=-\frac{5}{12}\left(=\right)z=\frac{3}{4}\)

Lại có \(x+y+z=\frac{-5}{12}\left(=\right)x+\frac{1}{4}=-\frac{5}{12}\left(=\right)x=-\frac{2}{3}\)

Lại có \(x+y+z=-\frac{5}{12}\left(=\right)y+\frac{1}{12}=-\frac{5}{12}\left(=\right)y=\frac{-1}{2}\)

30 tháng 7 2018

\(a,\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}\)

\(=\frac{\left(2^4\right)^3.3^{10}+2^3.3.5.\left(2.3\right)^9}{\left(2^2\right)^6.3^{12}+\left(2.3\right)^{11}}\)

\(=\frac{2^{12}.3^{10}+2^3.3.5.2^9.3^9}{2^{12}.3^{12}+2^{11}.3^{11}}\)

\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{11}.3^{11}\left(2.3+1\right)}\)

\(=\frac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}.7}=\frac{2.6}{3.7}=\frac{4}{7}\)

9 tháng 11 2016

a) Ta có:

\(\frac{4}{15}+\frac{1}{6}-\frac{4}{9}>\frac{2}{3}-x-\frac{1}{4}\\ \Rightarrow x+\frac{4}{15}+\frac{1}{6}-\frac{4}{9}>\frac{2}{3}-\frac{1}{4}\\ \Rightarrow x>\frac{2}{3}+\frac{4}{9}-\frac{1}{4}-\frac{1}{6}-\frac{4}{15}\\ \Rightarrow x>\left(\frac{6}{9}+\frac{4}{9}\right)-\left(\frac{15}{60}+\frac{10}{60}+\frac{16}{60}\right)\)

\(x>\frac{10}{9}-\frac{41}{60}\\ x>\frac{200-123}{180}\Rightarrow x>\frac{77}{180}\)

b) Bất đẳng thức kép

\(4-1\frac{1}{3}< x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\)

có nghĩa là ta phải có hai bất đẳng thức đồng thời:

\(x+\frac{1}{5}>4-1\frac{1}{3}\)\(x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\)

Ta tìm các giá trị của x cần thỏa mãn bất đẳng thức thứ nhất:

\(x+\frac{1}{5}>4-1\frac{1}{3}\Rightarrow x>4-1\frac{1}{3}-\frac{1}{5}\\ \Rightarrow x>\frac{37}{15}\)

Từ bất đẳng thức thứ hai

\(x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\Rightarrow x< \frac{86}{7}-\frac{27}{8}-\frac{1}{5}\\ \Rightarrow x< \frac{2439}{280}.\)

Như vậy các số hữu tỉ x cần thỏa mãn:

\(\frac{37}{15}< x< \frac{2439}{280}\)

9 tháng 11 2016

batngoừ nhỉ, mém quên, nhờ ông nhắc tui ms nhớ :V

Bài 1: Tìm số nguyên n để phân số sau có giá trị là một số nguyên và tính giá trị đó a. \(A=\frac{3n+9}{n-4}\)                                     b.\(B=\frac{6n+5}{2n-1}\)Bài 2: Tìm số nguyên x và y biết rằng:                     \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)Bài 3:Viết tất cả các số nguyên có giá trị tuyệt đối nhỏ hơn 20 theo thứ tự tùy ý.Lấy mỗi số trừ đi số thứ tự của nó ta được một hiệu...
Đọc tiếp

Bài 1: Tìm số nguyên n để phân số sau có giá trị là một số nguyên và tính giá trị đó

 a. \(A=\frac{3n+9}{n-4}\)                                     b.\(B=\frac{6n+5}{2n-1}\)

Bài 2: Tìm số nguyên x và y biết rằng: 

                    \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

Bài 3:Viết tất cả các số nguyên có giá trị tuyệt đối nhỏ hơn 20 theo thứ tự tùy ý.Lấy mỗi số trừ đi số thứ tự của nó ta được một hiệu .Tổng của tất cả các hiệu đó bằng bao nhiêu ?

Bài 4:Thực hiện các phép tính:

a.\(\frac{(\frac{3}{10}-\frac{4}{15}-\frac{7}{20})\times\frac{5}{19}}{(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35})\times\frac{-4}{3}}\) 

b.\(\frac{\left(1+2+3+...+100\right)\times\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right)\times\left(6,3\times12-21\times3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}}\)

c.\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}\)

2
18 tháng 8 2020

các bạn giúp mình với mình đang cần đáp án gấp

18 tháng 8 2020

1) a.Ta có \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)

Vì \(3\inℤ\Rightarrow\frac{21}{n-4}\inℤ\Rightarrow21⋮n-4\Rightarrow n-4\inƯ\left(21\right)\)

=> \(n-4\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=> \(n\in\left\{5;3;8;1;11;-3;25;-17\right\}\)

b) Ta có B = \(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)

Vì \(3\inℤ\Rightarrow\frac{8}{2n-1}\inℤ\Rightarrow2n-1\inƯ\left(8\right)\Rightarrow2n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)(1)

lại có với mọi n nguyên => 2n \(⋮\)2 => 2n - 1 không chia hết cho 2 (2)

Kết hợp (1) ; (2) => \(2n-1\in\left\{1;-1\right\}\Rightarrow n\in\left\{1;0\right\}\)

2) Ta có : \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

=> \(\frac{20+xy}{4x}=\frac{1}{8}\)

=> 4x = 8(20 + xy)

=> x = 2(20 + xy)

=> x = 40 + 2xy

=> x - 2xy = 40

=> x(1 - 2y) = 40

Nhận thấy : với mọi y nguyên => 1 - 2y là số không chia hết cho 2 (1)

mà x(1 - 2y) = 40

=> 1 - 2y \(\inƯ\left(40\right)\)(2)

Kết hợp (1) (2) => \(1-2y\in\left\{1;5;-1;-5\right\}\)

Nếu 1 - 2y = 1 => x = 40

=> y = 0 ; x = 40

Nếu 1 - 2y = 5 => x = 8

=> y = -2 ; x = 8 

Nếu 1 - 2y = -1 => x = -40

=> y = 1 ; y = - 40

Nếu 1 - 2y = -5 => x = -8

=> y = 3 ; x =-8

Vậy các cặp (x;y) thỏa mãn là : (40 ; 0) ; (8; - 2) ; (-40 ; 1) ; (-8 ; 3)

4) \(\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}=\frac{-\frac{19}{60}.\frac{5}{19}}{\frac{21}{70}.\frac{-4}{3}}=\frac{-\frac{5}{60}}{\frac{2}{5}}=-\frac{5}{60}:\frac{2}{5}=-\frac{5}{24}\)

b) \(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}}\)

\(=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).0}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}=0\)

c) \(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}}=\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{4\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}{4\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}\)

\(=\frac{1}{4}+\frac{3}{4}=1\)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

\(\begin{array}{l}a)\left( {\frac{2}{3} + \frac{1}{6}} \right):\frac{5}{4} + \left( {\frac{1}{4} + \frac{3}{8}} \right):\frac{5}{2}\\ = \left( {\frac{4}{6} + \frac{1}{6}} \right).\frac{4}{5} + \left( {\frac{2}{8} + \frac{3}{8}} \right).\frac{2}{5}\\ = \frac{5}{6}.\frac{4}{5} + \frac{5}{8}.\frac{2}{5}\\ = \frac{2}{3} + \frac{1}{4}\\ = \frac{8}{{12}} + \frac{3}{{12}}\\ = \frac{{11}}{{12}}\\b)\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\\ = \frac{5}{9}:\left( {\frac{2}{{22}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{4}{{14}}} \right)\\ = \frac{5}{9}:\frac{{ - 3}}{{22}} + \frac{7}{4}.\frac{{ - 3}}{{14}}\\ = \frac{5}{9}.\frac{{ - 22}}{3} + \frac{{ - 3}}{8}\\ = \frac{{ - 110}}{{27}} + \frac{{ - 3}}{8}\\ = \frac{{ - 880}}{{216}} + \frac{{ - 81}}{{216}}\\ = \frac{{ - 961}}{{216}}\end{array}\)