Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=6/x-2 là số nguyên
=> 6 chia hết cho x-2
=> x-2 thuộc Ư(6)={-6;-3;-2;-1;1;2;3;6}
=> x thuộc {-4;-1;0;1;3;4;5;8}
Vậy x thuộc {-4;-1;0;1;3;4;5;8}
B=x+1/x-2 là số nguyên
=> x+1 chia hết cho x-2
=> x-2+3 chia hết cho x-2
=> 3 chia hết cho x-2
=> x-2 thuộc Ư(3)={-3;-1;1;3}
=> x thuộc {-1;1;3;5}
Vậy x thuộc {-1;1;3;5}
... (phần c tương tự)
Học tốt!
a) Để \(A=\frac{6}{x-2}\in Z\) <=> \(6⋮x-2\)
<=> \(x-2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Lập bảng:
x - 2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 3 | 1 | 4 | 0 | 5 | -1 | 8 | -4 |
Vậy....
B = \(\frac{x+1}{x-2}=\frac{x-2+3}{x-2}=1+\frac{3}{x-2}\)
Để B \(\in\)Z <=> 3 \(⋮\)x - 2
<=> x - 2 \(\in\)Ư(3) = {1; -1; 3; -3}
Lập bảng:
x - 2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
Vậy ...
\(a,\) Ta có \(y=\frac{5x+9}{x+3}\)
Để \(y\) nhận giá trị nguyên thì : \(5x+9⋮x+3\)
\(\Rightarrow5\left(x+3\right)+9-15⋮x+3\)
\(\Rightarrow5\left(x+3\right)-6⋮x+3\)
\(\Rightarrow-6⋮x+3\)
\(\Rightarrow6⋮x+3\)
\(\Rightarrow x+3\inƯ_{\left(6\right)}\)
\(\Rightarrow x+3=\left(-6,-3,-2,-1,1,2,3,6\right)\) Máy tớ ko viết được ngoặc khép thông cảm nha
\(\Rightarrow x=\left(-9,-6,-5,-4,-2,-1,0,3\right)\)
Ta có
IxI >=0 với mọi x thuộc Z
IyI >=0 với mọi x thuộc Z
=> IxI+IyI >=0 với ọi x,y thuộc Z
Mà -5<0 => Không tồn tại giá trị x,y thỏa mãn đề bài
\(\frac{a}{5}-\frac{2}{b}=\frac{2}{15}\)
\(=\frac{a.b}{5.b}-\frac{10}{5.b}=\frac{2}{15}\)
\(=\frac{a.b-10}{5.b}\)\(=\frac{2}{15}\)\(\Rightarrow5.b=15\Rightarrow b=3\)
thay b = 3 ta có a = 4