Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x-y+7)^2022>=0 với mọi x,y
|x-3|^2023>=0 với mọi x,y
Do đó: (2x-y+7)^2022+|x-3|^2023>=0 với mọi x,y
mà \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}< =0\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}=0\)
=>2x-y+7=0 và x-3=0
=>x=3 và y=2x+7=2*3+7=13
Dễ thấy \(\left(2x-y+7\right)^{2012}\ge0;\left|x-3\right|^{2013}\ge0\Rightarrow\text{Vế trái}\ge0\) (1)
\(\text{Mà theo đề bài: VT(vế trái)}\le0\) (2) .\(\text{Kết hợp (1) và (2) suy ra VT = 0}\)
\(\text{Hay: }\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}=0\)
\(\text{Điều này xảy ra khi: }\hept{\begin{cases}x-3=0\\2x-y+7=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=2x+7=2.3+7=13\end{cases}}\)
\(\text{Vậy...}\)