Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm các bộ 3 số tự nhiên a, b, c khác 0 thỏa mãn:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\)
Giả sử không mất tính tổng quát : a < b < c
=> 1 / a > 1 / b > 1 / c
=> 1 / a + 1 / a + 1 / a > 1 / a + 1 / b + 1 / c > 1 / c + 1 / c + 1 / c
=> 3 . 1/ a > 4 / 5 > 3 . 1 / c
Đến đây cậu có thể là được rồi
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\Rightarrow\frac{1}{2}+\frac{3}{10}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}=\frac{4}{5}\)
Như vậy cũng hơi tắt. Nhưng mà **** cho tôi đi. Bai này có công thức đấy.
\(\frac{a}{b}<1\Rightarrow\frac{a}{b}=\frac{1}{k+1}+\frac{a-r}{b.\left(k+1\right)}\)với k là thương của b cho a, r là số dư của phép chia của b cho a
Câu hỏi của doraemon - Toán lớp 6 - Học toán với OnlineMath