Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x+y=z\left(1\right)\\x^3+y^3=z^2\left(2\right)\end{cases}}\)
Ta thế (1) vào (2) : \(\left(x+y\right)^3-3xy\left(x+y\right)=\left(x+y\right)^2\)
<=> \(\left(x+y\right)^2-3xy=\left(x+y\right)\)
Đặt: \(x+y=S;xy=P\)vì x, y nguyên dương => S; P nguyên dương
ĐK để tồn tại nghiệm x, y là: \(S^2\ge4P\)
Có: \(S^2-3P=S\)
=> \(S+3P\ge4P\)<=> \(S\ge P\)
=> \(S^2-S=3P\le3S\)
<=> \(0\le S\le4\)
+) S = 0 loại
+) S = 1 => P = 0 loại
+) S = 2 => P =3/2 loại
+) S = 3 => P = 2
=> \(\hept{\begin{cases}x+y=3\\xy=2\end{cases}}\)<=> x =2; y =1 hoặc x = 1; y =2
=> (x; y; z ) = ( 1; 2; 3) thử lại thỏa mãn
hoặc (x; y; z) = ( 2; 1; 3 ) thử lại thỏa mãn
+) S = 4 => P = 4
=> \(\hept{\begin{cases}x+y=4\\xy=4\end{cases}\Leftrightarrow}x=y=2\)
=> (x; y; z ) = ( 2; 2; 4) thử lại thỏa mãn.
Vậy: có 3 nghiệm là:....
\(\left(1\right)\Leftrightarrow z=x-y+1\)
Thế vào (2)\(xy+\left(x^2+y^2-2xy+2x-2y+1\right)-7\left(x-y+1\right)+10=0\)
\(x^2+y^2-xy-5x+5y+4\Leftrightarrow-xy-5\left(x-y\right)+21=0\left(3\right)\\ \)
\(\left(x-y\right)^2=17-2xy\Rightarrow-xy=\frac{\left(x-y\right)^2-17}{2}\) (4)đặt (x-y)=t
\(\left(3\right)\Leftrightarrow\frac{t^2-17}{2}-5t+21=0\Leftrightarrow t^2-10t+25\Rightarrow t=5\)
(1)=> z=6
(4) => xy=-4 hệ \(\left\{\begin{matrix}x-y=5\\xy=-4\end{matrix}\right.\)=> (y+5)y=y^2+5y+4=0=>\(\left\{\begin{matrix}y=-1\\y=-4\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}x=4\\x=1\end{matrix}\right.\)
Kết luận:
(x,y,z)=(1,-4,6);(4,-1,6)
b: =>x^2-y^2-4y-2x-3=0 và x^2+2x+y=0
=>x^2-2x+1-y^2-4y-4=0 và x^2+2x+y=0
=>x=1 và y=-2 và x^2+2x+y=0
=>Hệ vô nghiệm
a: \(\Leftrightarrow\left\{{}\begin{matrix}z=2x-5\\y=3-2x+z=3-2x+2x-5=-2\\3x-2\cdot\left(-2\right)+2x-5=14\end{matrix}\right.\)
=>y=-2; 3x+4+2x-5=14; z=2x-5
=>y=-2; x=3; z=2*3-5=1
\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)
Lấy (2) cộng (3) ta được
\(x^2+y^2-yz-zx=2\) (4)
Lấy (1) - (4) ta được
\(2x\left(x+z\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)
Xét 2 TH rồi thay vào tìm được y và z
1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)
Đến đây thì dễ rồi nhé