Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:* Nếu p=2 => p+2=2+2=4 là hợp số (trái với đề bài)
* Nếu p=3 => p+2=3+2=5 là số nguyên tố
=> p+4=3+4=7 là số nguyên tố
=> p=3 thỏa mãn đề bài
* Nếu p là số nguyên tố; p>3 => p có dạng 3k+1 hoặc 3k+2 (k ∈ N*)
* Nếu p=3k+1 => p+2=3k+1+2=3k+3=3(k+1)
Vì 3 ⋮ 3 => 3(k+1) ⋮ 3 => p+2 ⋮ 3, mà p+2 là số nguyên tố lớn hơn 3 => p+2 là hợp số (trái với đề bài)
* Nếu p=3k+2 => p+4=3k+2+4=3k+6=3k+3.2=3(k+2)
Vì 3 ⋮ 3 => 3(k+2) ⋮ 3 => p+4 ⋮ 3, mà p+4 là số nguyên tố lớn hơn 3 => p+4 là hợp số (trái với đề bài)
Vậy p=3 thỏa mãn đề bài
Tổng của 4 số nguyên tố là một số nguyên tố ⇒ tổng của 4 số nguyên tố là 1 số lẻ ⇒ trong 4 số đó tồn tại ít nhất một số nguyên tố chẵn. Mà số nguyên tố chẵn duy nhất là 2. Vậy 4 số nguyên tố cần tìm là: 2; 3; 5; 7
Vì 4 số nguyên tố có tổng là số lẻ \(\Rightarrow\)có một số là chẵn
\(\Rightarrow\)Số chẵn trong 4 số đó là 2
\(\Rightarrow\)3 số nguyên tố tiếp theo lần lượt là 3 ; 5 ; 7
Vậy 4 số nguyên tố liên tiếp có tổng là số nguyên tố là 2 ; 3 ; 5 ; 7
Nếu cả 4 số nguyên tố đều > 2 thì 4 số đó phải là số lẻ
=> Tổng 4 số lẻ là số chẵn , lại là số lớn hơn 2 nên tổng không thể là số nguyên tố
Vậy trong 4 số có 1 số là số 2 , vậy các số nguyên tố tiếp theo là 3,5,7
Tổng của 4 số là : 2 + 3 + 5 + 7 = 17 là số nguyên tố ( thỏa mãn đề bài)
ĐS : 2,3,5,7
1. Ta có: trong 25 số nguyên tố có 1 số nguyên tố chẵn còn lại là 24 số nguyên tố lẻ. Tổng của 24 số lẻ là một số chẵn nên tổng của 25 số nguyên tố nhỏ hơn 100 là số chẵn.
2,3,5,7
tích mg với