Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chỉ biết đến đây thôi:
\(\Leftrightarrow\left(b-c\right)\left(a^3-b^3\right)+\left(a-b\right)\left(c^3-b^3\right)=2020^{2019}\)
\(\Leftrightarrow\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(c-b\right)\left(c^2+bc+b^2\right)=2020^{2019}\)
\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(a^2+ab+b^2-c^2-bc-b^2\right)=2020^{2019}\)
\(\Leftrightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a+b+c\right)=2020^{2019}\)
<=> \(2a^2+2b^2+2c^2=2ab+2bc+2ca< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0< =>\)
a=b=c => 32020 = 3.a2019 <=> 32019 = a2019 => a=b=c=3
A= 12017 + 02018 + (-1)2019 = 0
Ta có: \(a+b+c=3\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)
\(\Rightarrow2\left(ab+bc+ca\right)=9-\left(a^2+b^2+c^2\right)=6\Rightarrow ab+bc+ca=3\)
\(\Rightarrow a^2+b^2+c^2=ab+bc+ca\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
Mà a + b + c = 3 nên a = b = c = 1
Suy ra \(P=\left(-1\right)^{2019}+\left(-1\right)^{2020}+\left(-1\right)^{2021}=-1\)
=> Theo bđt cô si ta có : B≥33√(x2+1y2 )(y2+1z2 )(z2+1x2 )
=> B≥33√2·xy ·2·yz ·2·zx =33√8=6
( Chỗ này là thay x2+1y2 ≥2√x2y2 =2·xy và 2 cái kia tương tự vào )
=> Min B=6
Mình nhầm chỗ câu b, sửa lại là :
B≥33√√(x2+1y2 )(y2+1z2 )(z2+1x2 )
Bạn làm tương tự => B≥3√2.
làm cái đề ra ấy, ngại viết lại đề :P
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=4\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)
\(\Rightarrow M=1^{2018}+1^{2019}+1^{2020}=1+1+1=3\)
Ta có : a + b + c = 6
=> ( a + b + c ) ^ 2 = 6 ^ 2 = 36
=> a ^ 2 + b ^ 2 + c ^ 2 + 2 x ( ab + bc + ca ) = 36
=> 12 + 2 x ( ab + bc + ca ) = 36 ( vì a ^ 2 + b ^ 2 + c ^ 2 = 12 )
=> 2 x ( ab + bc + ca ) = 36 - 12
=> 2 x ( ab + bc + ca ) = 24
=> ab + bc + ca = 12
Do đó ab + bc + ca = a ^ 2 + b ^ 2 + c ^ 2
=> a = b = c = 2 ( vì a + b + c = 6 )
Khi đó : P = ( 2 - 3 ) ^ 2020 + ( 2 - 3 ) ^ 2020 + ( 2 - 3 ) ^ 2020
=> P = ( - 1 ) ^ 2020 + ( - 1 ) ^ 2020 + ( - 1 ) ^ 2020
=> P = 1 + 1 + 1 = 3
Vậy P = 3
Cách 2:
Ta có: \(a^2+b^2+c^2=12\)
\(\Rightarrow a^2+b^2+c^2-12=0\)
\(\Rightarrow a^2+b^2+c^2-24+12=0\)
\(\Rightarrow a^2+b^2+c^2-4\left(a+b+c\right)+12=0\)(Vì a+b+c=6)
\(\Rightarrow\left(a^2-4a+4\right)+\left(b^2-4b+4\right)+\left(c^2-4c+4\right)=0\)
\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2+\left(c-2\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(a-2\right)^2=0\\\left(b-2\right)^2=0\\\left(c-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}a-2=0\\b-2=0\\c-2=0\end{cases}}\Rightarrow a=b=c=2\)
Thay a=b=c=2 vào P, ta có:
\(P=\left(2-3\right)^{2020}+\left(2-3\right)^{2020}+\left(2-3\right)^{2020}\)
\(=1+1+1=3\)
P/s: Bài bạn nguyễn tuấn thảo , chỗ để suy ra a=b=c=2 lm tắt quá nhé :))
Ta có
\(VT=a^3\left(b-c\right)+\left(b^3c-bc^3\right)-a\left(b^3-c^3\right)\)
\(=\left(b-c\right)\left(a^3+bc\left(b+c\right)-a\left(b^2+bc+c^2\right)\right)\)
\(=\left(b-c\right)\left[\left(a^3-ab^2\right)+\left(b^2c-abc\right)+\left(bc^2-ac^2\right)\right]\)
\(=\left(b-c\right)\left(a-b\right)\left[a\left(a+b\right)-bc-c^2\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)\)
TH1 Nếu a,b,c chia 3 dư 0,1,2 =>\(a+b+c⋮3\)
TH2 Trừ TH trên
Theo nguyên lí diricle luôn có 2 trong 3 số trên chia 3 cùng 1 số dư
Hay a-b hoặc b-c hoặc a-c chia hết cho 3
Từ 2 trường hợp
=> \(VT⋮3\)
Mà VP chia 3 dư 1 do 2020 chia 3 dư 1
=> không có giá trị nào của a,b,c nguyên thỏa mãn đề bài
Vậy không có gia trị nào của a,b,c nguyên thỏa mãn đề bài
mk ko biết