Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
`(2x-1)(x+2/3)=0`
\(< =>\left[{}\begin{matrix}2x-1=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b)
\(\dfrac{x+4}{2019}+\dfrac{x+3}{2020}=\dfrac{x+2}{2021}+\dfrac{x+1}{2022}\)
\(< =>\dfrac{x+4}{2019}+1+\dfrac{x+3}{2020}+1=\dfrac{x+2}{2021}+1+\dfrac{x+1}{2022}+1\)
\(< =>\dfrac{x+2023}{2019}+\dfrac{x+2023}{2020}=\dfrac{x+2023}{2021}+\dfrac{x+2023}{2022}\)
\(< =>\left(x+2023\right)\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\right)=0\)
\(< =>x+2023=0\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\ne0\right)\\ < =>x=-2023\)
a) Chỉ là thay số nên bạn tự làm nhé.
b) \(y_1=1\), \(y_2=f\left(y_1\right)=f\left(1\right)=1-\left|1\right|=0\), \(y_3=f\left(y_2\right)=f\left(0\right)=1-\left|0\right|=1\), cứ tiếp tục như vậy.
Dễ dàng nhận thấy rằng với \(k\)lẻ thì \(y_k=1\), \(k\)chẵn thì \(y_k=0\)(1).
Khi đó ta có:
\(A=y_1+y_2+...+y_{2021}\)
\(A=1+0+1+...+1\)
\(A=\frac{2021-1}{2}+1=1011\)
\(A=\left(\dfrac{2020}{2021}xy^5z\right).\left(\dfrac{2020}{2021}x^3yz^2\right).\left(-\dfrac{2020}{2021}\right)^0\)
\(a)A=\dfrac{2020.2021.2020}{2021.2020.2021}.\left(x.x^3\right).\left(y^5.y\right).\left(z.z^2\right)\Leftrightarrow A=\dfrac{2020}{2021}x^4.y^6.z^3\)
\(b)A=\dfrac{2020}{2021}x^4.y^6.z^3\)
\(\Rightarrow\text{A có hệ số là:}\dfrac{2020}{2021}\)
\(\text{Phần biến là:}\left(x,y,z\right)\)
\(c)\text{Xét A ta có:}\dfrac{2020}{2021}< 0;x^4,y^6\text{ luôn }< 0\)
\(\Rightarrow\dfrac{2020}{2021}x^4.y^6>0\Rightarrow\text{ Nếu }z< 0\Rightarrow A\le0\text{ và z có số mũ là:3}\)
\(\text{Chẳng hạn:}\left(-\right).\left(-\right).\left(-\right)=\left(-\right).< 0\Rightarrow z\text{ phải }\ge0\text{ thì }A\ge0\)
\(\Rightarrow Z\in N\)
Đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\Rightarrow\hept{\begin{cases}a=2020k\\b=2021k\\c=2022k\end{cases}}\)
Khi đó M = 4(a - b)(b - c) - (c - a)2
= 4(2020k - 2021k)(2021k - 2022k) - (2022k - 2020k)2
= 4(-k)(-k) - (2k)2
= 4k2 - 4k2 = 0
Vậy M = 0
Đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\)( \(k\ne0\))
\(\Rightarrow a=2020k\); \(b=2021k\); \(c=2022k\)
Thay a, b, c vào biểu thức M ta có:
\(M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
\(=4\left(2020k-2021k\right)\left(2021k-2022k\right)-\left(2022k-2020k\right)^2\)
\(=4.\left(-k\right).\left(-k\right)-\left(2k\right)^2=4k^2-4k^2=0\)
Vậy \(M=0\)
ta có
\(f\left(-2021\right)=f\left(2021\cdot\left(-1\right)\right)=f\left(2021-1\right)=f\left(2020\right)\)
vậy \(f\left(2020\right)=f\left(-2021\right)=2020\)
Để \(T_{max}=\frac{-2\left|x-2018\right|-2021}{2020+\left|x-2018\right|}\)
Thì \(2020+\left|x-2018\right|_{min}\)
và \(-2\left|x-2018\right|-2021_{max}\)
Mà \(\left|x-2018\right|\ge0\forall x\Rightarrow-2\left|x-2018\right|\le0\)
\(\Rightarrow T_{max}\Leftrightarrow\left|x-2018\right|_{min}\)
\(\Rightarrow T_{max}=-\frac{2021}{2020}\Leftrightarrow\left|x-2018\right|=0\Leftrightarrow x=0\)
\(\)
\(=\dfrac{\left|x-2020\right|+2022-1}{\left|x-2020\right|+2022}=1-\dfrac{1}{\left|x-2020\right|+2022}\\ mà\left|x-2020\right|\ge0\\ \Rightarrow\left|x-2022\right|+2022\ge2022\)
\(\Rightarrow\dfrac{1}{\left|x-2020\right|+2022}\le\dfrac{1}{2022}\\ =1-\dfrac{1}{\left|x-2020\right|+2022}\ge1-\dfrac{1}{2022}\\ =\dfrac{2021}{2022}\\ \Rightarrow B_{min}=\dfrac{2021}{2022}.tại.x-2020=0\Rightarrow x=2020\)
Xem lại dưới mẫu