K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2021

\(AB^2=AC^2+BC^2-2.AC.BC.\cos C\Rightarrow\sin C=...\)

\(\dfrac{BC}{\sin A}=\dfrac{AC}{\sin B}=\dfrac{AB}{\sin C}=2R\)

Mấu chốt là bạn phải tìm được độ dài các cạnh, độ dài các cạnh :công thức trong SGK

2 tháng 8 2019

Phương trình đường tròn (C) có dạng:

x2 + y2 -2ax – 2by + c= 0 ( a2+ b2 –c > 0)

Do 3 điểm A; B; C thuộc (C) nên 

=>

Vậy bán kính R= a 2 + b 2 - c 2 = 6 , 25  

Chọn C.

23 tháng 1 2021

Phương trình đường tròn (C) có dạng:

x2 + y2 -2ax – 2by + c= 0 ( a2+ b2 –c > 0)

Do 3 điểm A; B; C thuộc (C) nên 

Vậy bán kính R= \(\sqrt{a^2+b^2-c^2}=\sqrt{\left(\dfrac{3}{2}\right)^2+2^2}=2.5\)

 

 

NV
14 tháng 4 2022

a.

Gọi phương trình đường tròn (C) có dạng:

\(x^2+y^2-ax-by+c=0\)

Do A;B;C thuộc (C) nên: \(\left\{{}\begin{matrix}0+16-0.a-4b+c=0\\9+16-3a-4b+c=0\\9+0-3a-0.b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-4b+c=-16\\-3a-4b+c=-25\\-3a+c=-9\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=4\\c=0\end{matrix}\right.\)

Hay pt (C) có dạng: \(x^2+y^2-3x-4y=0\)

b.

Đường tròn (C) tiếp xúc (d) nên có bán kính \(R=d\left(C;d\right)=\dfrac{\left|3.3+0.4-5\right|}{\sqrt{3^2+4^2}}=\dfrac{4}{5}\)

Phương trình: \(\left(x-3\right)^2+y^2=\dfrac{16}{25}\)

14 tháng 4 2022

https://hoc24.vn/cau-hoi/de-la-toi-2021-nhung-minh-tinh-toi-20-la-dc-roi-a.5819874582691

đề gốc với bài giải của em nè thầy ơi (nó hơi tắt 1 tý thầy xem hộ em)

3 tháng 10 2017

Phương trình đường tròn (C) có dạng:

x2 + y2 -2ax – 2by + c= 0 ( a2+ b2 –c > 0)

Do 3 điểm A; B; C thuộc (C) nên 

Vậy tâm I( 1;1)

Chọn D.

NV
15 tháng 3 2022

a.

\(\overrightarrow{AB}=\left(-6;3\right)\Rightarrow AB=\sqrt{\left(-6\right)^2+3^2}=3\sqrt{5}\)

Đường tròn (C) tâm A và đi qua B có bán kính \(R=AB=3\sqrt{5}\)

Phương trình:

\(\left(x-3\right)^2+\left(y-1\right)^2=45\)

b.

Gọi M là trung điểm AB \(\Rightarrow M\left(0;\dfrac{5}{2}\right)\)

Đường tròn đường kính AB có tâm M và bán kính \(R=\dfrac{AB}{2}=\dfrac{3\sqrt{5}}{2}\)

Phương trình:

\(x^2+\left(y-\dfrac{5}{2}\right)^2=\dfrac{45}{4}\)

28 tháng 2 2021

Ta có :

\(\overrightarrow{AB}\) = (-3;-4)

\(\Rightarrow\overrightarrow{n}=\left(4;-3\right)\)  là vectơ pháp tuyến của đường thẳng AB

Vậy phương trình đường thẳng AB là :

4x - 3(y-4) = 0

hay 4x - 3y = -4

Câu b tương tự

 

 

NV
24 tháng 12 2020

Gọi \(M\left(x;y\right)\Rightarrow\left(x+3\right)^2+\left(y+4\right)^2=1\)

\(\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-x;2-y\right)\\\overrightarrow{MB}=\left(-2-x;1-y\right)\\\overrightarrow{MC}=\left(3-x;4-y\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\left(2-3x;7-3y\right)\)

\(T^2=\left(3x-2\right)^2+\left(3y-7\right)^2\)

Đặt \(\left(x+3;y+4\right)=\left(a;b\right)\Rightarrow a^2+b^2=1\)

\(T^2=\left(3a-11\right)^2+\left(3b-19\right)^2\)

\(T^2=9\left(a^2+b^2\right)-66a-114b+482=491-6\left(11a+19b\right)\)

Ta lại có:

\(\left(11a+19b\right)^2\le\left(11^2+19^2\right)\left(a^2+b^2\right)=482\)

\(\Rightarrow11a+19b\ge-\sqrt{482}\)

\(\Rightarrow T^2\le491+6\sqrt{482}\)

\(\Rightarrow T\le\sqrt{491+6\sqrt{482}}\)

Số liệu bài toán cho xấu 1 cách phi lý và vô nghĩa

24 tháng 12 2020

Cảm ơn anh rất nhiều ạ