\(\frac{x}{2}\)\(\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

=>    \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{6}\\\frac{y}{6}=\frac{z}{9}\end{cases}}\)

=>    \(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\)

=>    \(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x+y+z}{4+6+9}=\frac{38}{19}=2\)

=>   \(\frac{x}{4}=2;\frac{y}{6}=2;\frac{z}{9}=2\)

=>    \(x=8;y=12;z=18.\)

21 tháng 8 2020

Ta có \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{2}=\frac{z}{3}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{6}\\\frac{y}{6}=\frac{z}{9}\end{cases}}\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\)

Lại có x + y + z = 38

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x+y+z}{4+6+9}=\frac{38}{19}=2\)

=> x = 8 ; y = 12 ; z = 18

11 tháng 10 2020

Mình ko ghi áp dụng tính chất dãy bằng nhau nx nhé

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=2\Rightarrow x=2.2=4;y=2.3=6;z=2.4=8\)

\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{-z}{-7}=\frac{x+y-z}{5-6-7}=\frac{32}{-8}=-4\Leftrightarrow x=-20;y=24;z=-28\)

\(\frac{2x}{10}=\frac{3y}{6}=\frac{5z}{15}=\frac{2x-3y+5z}{10-6+15}=\frac{38}{19}=2\Rightarrow x=10;y=4;z=6\)

11 tháng 10 2020

bn làm đúng rồi nhá và 1 k cho bạn

20 tháng 9 2019

phần 1 ghi ko rõ

20 tháng 9 2019

2) Vì \(\frac{x}{y}=\frac{5}{7}\Rightarrow\frac{x}{5}=\frac{y}{7}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{5}=\frac{y}{7}=\frac{x-y}{5-7}=\frac{7}{-2}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{-7}{2}.5=\frac{-35}{2}\\y=\frac{-7}{2}.7=\frac{-1}{2}\end{cases}}\)

Vậy ..

Có \(\frac{x-1}{10}=\frac{y-2}{6}=\frac{z-3}{21}\) và \(5x+y-2x=38\)

\(\Rightarrow\frac{5\left(x-1\right)}{5.10}=\frac{y-2}{6}=\frac{2\left(z-3\right)}{2.21}=\frac{5x-5}{50}=\frac{y-2}{6}=\frac{2z-6}{42}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có : 

\(\frac{5x-5}{50}=\frac{y-2}{6}=\frac{2z-6}{42}=\frac{\left(5x-5\right)+\left(y-2\right)-\left(2z-6\right)}{50+6-42}\)

\(=\frac{5x-5+y-2-2z+6}{50+6-42}=\frac{\left(5x+y-2z\right)+\left(6-5-2\right)}{50+6-42}\)

\(=\frac{38+\left(-1\right)}{50+6-42}=\frac{38+\left(-1\right)}{56-42}=\frac{38-1}{14}=\frac{37}{14}\)  . Từ đó ta có

\(\Rightarrow\frac{5x-5}{50}=\frac{37}{14}\Leftrightarrow5=\left(5x-5\right).14=37.50\Leftrightarrow\left(5x-5\right).14=1850\) 

\(\Rightarrow5x-5=\frac{1850}{14}=\frac{925}{7}\Leftrightarrow5x=\frac{935}{7}+\frac{25}{7}=\frac{960}{7}\Leftrightarrow x=\frac{192}{7}\)

\(\Rightarrow\frac{y-2}{6}=\frac{37}{14}=14\left(y-2\right)=37.6=222\Leftrightarrow y-2=\frac{111}{7}\Leftrightarrow y=\frac{125}{7}\)

\(\Rightarrow\frac{2z-6}{42}=\frac{37}{14}\Leftrightarrow14\left(2z-6\right)=37.42\Leftrightarrow14\left(2z-6\right)=1554\)

\(\Rightarrow2z-6=1544\div11=111\Leftrightarrow2z=117\Leftrightarrow z=58,5\)

27 tháng 10 2019

1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{12x-15y}{7}=\frac{20y-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)

 \(\Rightarrow\hept{\begin{cases}12x-15y=0\\15y-20z=0\end{cases}\Rightarrow}\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{12}\\\frac{y}{20}=\frac{z}{15}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{75}=\frac{y}{60}\\\frac{y}{60}=\frac{z}{45}\end{cases}\Rightarrow}\frac{x}{75}=\frac{y}{60}=\frac{z}{45}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)

=> x = 75.4 : 15 = 20 ;

     y = 60.4 : 15 = 16 ;

     z = 45.4 : 15 = 12

Vậy x = 20 ; y = 16 ; z = 12 

27 tháng 10 2019

2) Từ đẳng thức \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Rightarrow\frac{z}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)

Nếu x + y + z + t = 0

=> x + y = - (z + t)

=> y + z = - (t + x)

=> z + t = - (x + y)

=> t + x = - (z + y)

Khi đó : 

P =  \(\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(z+y\right)}{z+y}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

=> P = 4 

Nếu x + y + z + t khác 0 

=> \(\frac{1}{y+z+t}=\frac{1}{z+t+x}=\frac{1}{t+x+y}=\frac{1}{x+y+z}\)

=> y + z + t = z + t + x = t + x + y = x + y + z

=> x =y = z = t

Khi đó : P = 1 + 1 + 1 + 1 = 4

Vậy nếu x + y + z + t = 0 thì P = - 4

       nếu x + y + z + t khác 0 thì P = 4

11 tháng 2 2019

a) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1)

     \(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)

Từ (1);(2) suy ra: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Theo đề: \(\left|x-2y\right|=5\)

\(\Rightarrow x-2y=5\) (nếu \(x-2y\ge0\Leftrightarrow x\ge2y\) )

    \(x-2y=-5\) (nếu \(x< 2y\) )

Vậy có hai trường hợp

TH1: Nếu \(x\ge2y\) suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)

\(\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)=-15\\y=10.\left(-1\right)=-10\\z=6.\left(-1\right)=-6\end{cases}}\) (nhận)

TH2: Nếu x < 2y suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)

\(\Rightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=6.1=6\end{cases}}\) (nhận)

b) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)

    \(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\) (2)

Từ (1);(2) => \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k\)

\(\Rightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}\Rightarrow xy=6k.15k=90k^2=90\Rightarrow k^2=1\Rightarrow k=\left\{-1;1\right\}}\)

\(\Rightarrow\hept{\begin{cases}x=6.1=6\\y=15.1=15\\z=10.1=10\end{cases}}\) hoặc \(\hept{\begin{cases}x=6.\left(-1\right)=-6\\y=15.\left(-1\right)=-15\\z=10.\left(-1\right)=-10\end{cases}}\)

11 tháng 2 2019

c) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

\(\frac{2x+2y+2z}{x+y+z}\)

\(\frac{2\left(x+y+z\right)}{x+y+z}=2\)

=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2

=> \(\frac{y+z+1}{x}=2\) => y + z + 1 = 2x 

                                       => y + z + x + 1 = 3x

                                       => 1/2 + 1 = 3x

                                      => 3/2 = 3x

                                      => x = 3/2 : 3 = 1/2

=> \(\frac{x+z+2}{y}=2\) => x + z + 2 = 2y

                                        => x + z + y + 2 = 3y

                                        => 1/2 + 2 = 3y

                                       => 5/2 = 3y

                                       => y = 5/2 : 3 = 5/6

=> \(\frac{x+y-3}{z}=2\)=> x + y - 3 = 2z

                                         => x + y + z - 3 = 3z

                                          => 1/2 - 3 = 3z

                                        => 3z = -5/2

                                         => z = -5/2 : 3 = -5/6

Vậy ...

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-2}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{2x-2+3y-6-z+2}{4+9-4}=\frac{89}{9}.\)

Đến đây tự giải nốt phần sau easy rồi

Study well 

2 tháng 9 2019

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-2}{9}=\frac{z-2}{4}\)

+ Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x-2}{4}=\frac{3y-2}{9}=\frac{z-2}{4}=\frac{2x+3y-z}{4+9-4}=\frac{95}{9}\)

Suy ra \(\frac{2x-2}{4}=\frac{95}{9}\Rightarrow x=\frac{199}{9}\)

            \(\frac{3y-2}{9}=\frac{95}{9}\Rightarrow y=\frac{97}{3}\)

        \(\frac{z-2}{4}=\frac{95}{9}\Rightarrow z=\frac{398}{9}\)

Vậy \(x=\frac{199}{9};y=\frac{97}{3};z=\frac{398}{9}\)

Chúc bạn học tốt !!!

31 tháng 7 2020

\(\frac{2}{3}x=\frac{3}{4}y=\frac{5}{6}z\)

=> \(\frac{2}{3}x.\frac{1}{30}=\frac{3}{4}y.\frac{1}{30}=\frac{5}{6}z.\frac{1}{30}\)

=> \(\frac{x}{45}=\frac{y}{40}=\frac{z}{36}\)

\(\Rightarrow\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}\)

Đến đây bạn tự làm tiếp

31 tháng 7 2020

\(\frac{2x}{3}=\frac{3y}{4}=\frac{5z}{6}< =>\frac{2x}{90}=\frac{3y}{120}=\frac{5z}{180}< =>\frac{x}{45}=\frac{y}{40}=\frac{z}{36}\)

\(< =>\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}\)

Theo tính chất của dãy tỉ số bằng nhau thì 

\(\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}=\frac{x^2+y^2+z^2}{2025+1600+1296}=\frac{724}{4921}\)

\(< =>\hept{\begin{cases}4921x^2=724.2025=1466100\\4921y^2=724.1600=1158400\\4921z=724.1296=938304\end{cases}}\)

\(< =>\hept{\begin{cases}x\approx\pm17\\y\approx\pm15\\z\approx\pm14\end{cases}}\)

4 tháng 7 2019

Lời giải :

Theo đề bài ta có \(\frac{x}{\frac{5}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{6}{5}}\Leftrightarrow\frac{2x}{5}=\frac{3y}{4}=\frac{5z}{6}\)

Đặt \(\frac{2x}{5}=\frac{3y}{4}=\frac{5z}{6}=k\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5k}{2}\\z=\frac{6k}{5}\end{cases}}\)

Mặt khác : \(\frac{x}{2}=\frac{z-28}{3}\)

\(\Leftrightarrow3x-2z=-56\)

\(\Leftrightarrow3\cdot\frac{5k}{2}-2\cdot\frac{6k}{5}=-56\)

\(\Leftrightarrow k=\frac{-560}{51}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{-1400}{51}\\y=\frac{-2240}{153}\\z=\frac{-224}{17}\end{cases}}\)

\(B=x+y-z=\frac{-1400}{51}+\frac{-2240}{153}-\frac{-224}{17}=\frac{-4424}{153}\)