Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\frac{a}{3}=\frac{b}{6}=\frac{c}{8}=k\)
=> a = 3. k
b = 6 . k = 2. 3. k
c = 8 k = 2 . 4. k
=> BCNN ( a; b; c ) = 3 . 2. 4 . k = 24 . k
Mà theo bài ra : BCNN ( a; b ; c ) = 504
=> 24 k = 504
=> k = 21.
=> a = 3. 21 = 63 ; b = 6. 21 = 126 ; c = 8 . 21 = 168
a, 105 = 3 x 5 x 7
Vậy ba số tự nhiên liên tiếp có tích bằng 105 lần lượt là:
3; 5; 7
b, 240 = 24 x 3 x 5 = 15 x 16
Vậy hai số tự nhiên liên tiếp thỏa mãn đề bài là:
15; 16
c, 360 = 3.4.5.6
Vậy bốn số tự nhiên liên tiếp có tích bằng 360 lần lượt là:
3; 4; 5; 6
Vậy số cần tìm là 6
Gọi d là ước chung của 2n+5 và 2n+3
=> 2n+5 chia hết cho d và 2n+3 chia hết cho d
=> (2n+5)-(2n+3)=2 chia hết cho d => d={1;2}
Do 2n+5 và 2n+3 lẻ => d lẻ => d=1
=> phân số trên tối giản với mọi n