\(\frac{x}{y}\)=\(\frac{y}{z}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

đk(x,y,z khác 0)

Áp dụng dãy tỉ số = nhau , ta có 

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{z+x+y}=1\Rightarrow x=y=z\)

thay vào giả thiết kia, ta có 

\(x^{2017}-x^{2018}=0\Leftrightarrow x^{2017}\left(1-x\right)=0\Leftrightarrow x=1\) (vì x khác 0)

=>x=y=z=1

8 tháng 1 2018

bn làm đúng rồi đó!

3 tháng 1 2018

Theo tính chất của dãy tỷ số bằng nhau, ta có : \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1.\) Suy ra  x = y = z .

mặt khác, theo giả thiết:   x2017 = y2005  Nên   x = y = 1. Vì :

            - Nếu  x = y > 1  :      x2017> x2005 = y2005

            - Nếu  x = y < 1 thì  :     x2017 < x2005 = y2005 

Vậy x = y = z = 1

21 tháng 7 2017

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và x + y -z = 10 

\(\frac{x}{2}=\frac{y}{3}=\frac{1}{4}.\frac{x}{2}=\frac{1}{4}.\frac{y}{3}\)\(=\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}=\frac{1}{3}.\frac{y}{4}=\frac{1}{3}.\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)

\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)và x + y - z = 10 

Theo tính chất dãy tỉ số bằng nhau: 

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\frac{x}{8}=2\Rightarrow x=2.8=16\)

*  \(\frac{y}{12}=2\Rightarrow y=2.12=24\)

\(\frac{z}{5}=2\Rightarrow z=2.5=10\)

Vậy...

21 tháng 7 2017

Ý mk nhầm chút xíu nhé! Cko sorry! 

\(\frac{z}{15}=2\Rightarrow z=2.15=30\)

... :( Xl

AH
Akai Haruma
Giáo viên
1 tháng 4 2019

Lời giải:

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Leftrightarrow \frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

\(\Leftrightarrow \frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)

\(\Leftrightarrow \frac{y+z}{x}+1=\frac{z+x}{y}+1=\frac{x+y}{z}+1\)

\(\Leftrightarrow \frac{y+z+x}{x}=\frac{z+x+y}{y}=\frac{x+y+z}{z}(*)\)

Nếu \(x+y+z=0\)

\(\Rightarrow x+y=-z; y+z=-x; z+x=-y\)

\(\Rightarrow B=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=\frac{(x+y)(y+z)(z+x)}{yzx}=\frac{(-z)(-x)(-y)}{yzx}=-1\)

Nếu $x+y+z\neq 0$. Khi đó từ $(*)$ suy ra $x=y=z$

\(\Rightarrow B=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=(1+\frac{x}{x})(1+\frac{x}{x})(1+\frac{x}{x})=(1+1)(1+1)(1+1)=8\)

Vậy................

21 tháng 8 2020

=>    \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{6}\\\frac{y}{6}=\frac{z}{9}\end{cases}}\)

=>    \(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\)

=>    \(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x+y+z}{4+6+9}=\frac{38}{19}=2\)

=>   \(\frac{x}{4}=2;\frac{y}{6}=2;\frac{z}{9}=2\)

=>    \(x=8;y=12;z=18.\)

21 tháng 8 2020

Ta có \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{2}=\frac{z}{3}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{6}\\\frac{y}{6}=\frac{z}{9}\end{cases}}\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\)

Lại có x + y + z = 38

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x+y+z}{4+6+9}=\frac{38}{19}=2\)

=> x = 8 ; y = 12 ; z = 18