K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

Nếu các số nguyên tố p, q, r đều khác 3 thì p, q, r chia 3 dư \(\pm1\)nên \(p^2,q^2,r^2\)chia cho 3 dư đều dư 1

Khi đó, \(p^2+q^2+r^2⋮3\), mà \(p^2+q^2+r^2>3\)nên \(p^2+q^2+r^2\)không là số nguyên tố

Do đó trong ba p, q, r số phải có là 3

\(\left(p;q;r\right)=\left(2;3;5\right)\Rightarrow p^2+q^2+r^2=38\left(l\right)\)

\(\left(p;q;r\right)=\left(3;5;7\right)\Rightarrow p^2+q^2+r^2=83\left(TM\right)\)

Vậy...

1 tháng 7 2016

Bài toán không có lời giải vì không có số nguyên tố âm nên không có kết quả cho bài toán này

29 tháng 10 2017

 Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố 

Vậy x chỉ là số chẵn mà nguyên tố => x= 2 

Với y=2 => z= 5 thỏa đk đề bài 

Nếu y>2 => y lẻ (vì y nguyên tố) 

=> y =2k +1 
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m 

Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3 
=>z chia hết cho 3 không thỏa đk 

Vậy x=y=2; z= 5 là duy nhất 

10 tháng 3 2018

Trả lời

 Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố 

Vậy x chỉ là số chẵn mà nguyên tố => x= 2 

Với y=2 => z= 5 thỏa đk đề bài 

Nếu y>2 => y lẻ (vì y nguyên tố) 

=> y =2k +1 
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m 

Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3 
=>z chia hết cho 3 không thỏa đk 

Vậy x=y=2; z= 5 là duy nhất 

Với x=2; y=5 thì 2^5 + 1 =33 đâu phải số nguyên tố.... 



 

15 tháng 3 2023

Các cậu giúp mình nha 

THANKS

NV
8 tháng 1

Do các số nguyên tố đều lớn hơn 1

\(\Rightarrow x^y>1\Rightarrow z-1>1\Rightarrow z>2\Rightarrow z\) lẻ

\(\Rightarrow z-1\) chẵn

\(\Rightarrow x^y\) chẵn \(\Rightarrow x\) chẵn \(\Rightarrow x=2\)

Pt trở thành: \(2^y=z-1\Rightarrow z=2^y+1\)

- Với \(y=2\Rightarrow z=5\) là SNT (thỏa mãn)

- Với \(y>2\Rightarrow y\) lẻ, đặt \(y=2k+1\) với \(k\ge1\)

\(\Rightarrow z=2^{2k+1}+1=2.4^k+1\)

Hiển nhiên \(z>3\), đồng thời do \(4\equiv1\left(mod3\right)\Rightarrow4^k\equiv1\left(mod3\right)\Rightarrow2.4^k\equiv2\left(mod3\right)\)

\(\Rightarrow2.4^k+1\equiv0\left(mod3\right)\)

\(\Rightarrow z⋮3\) mà \(z>3\Rightarrow z\) là hợp số (ktm)

Vậy \(\left(x;y;z\right)=\left(2;2;5\right)\)

8 tháng 1

\(\left(x,y,z\right)=\left(2,2,5.\right)\)

27 tháng 7 2015

Lần này là lần thứ 3 tớ gửi câu này