Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có:
\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)
\(=\frac{2}{x}-\frac{1}{x+2014}\)
\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)
\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)
2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1
b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)
A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)
A = \(x-1+x+1-3\)
A = \(2x-3\)
c) Với x = 3 => A = 2.3 - 3 = 3
c) Ta có: A = -2
=> 2x - 3 = -2
=> 2x = -2 + 3 = 1
=> x= 1/2
1)\(\frac{1}{2\text{a}}=\frac{1.\text{x^2}}{2\text{a.x}^2}=\frac{x^2}{2\text{ax}^2};\frac{2}{x}=\frac{2.2\text{a}x}{x.2\text{ax}}=\frac{4\text{ax}}{2\text{ax}^2}\)\(;\frac{x^2-2\text{ã}}{2\text{ax}^2}\)giữ nguyên
2) \(\frac{x}{a-2}=\frac{x.3\text{a}}{3\text{a}\left(a-2\right)}=\frac{3\text{ax}}{3\text{a}^2-6\text{a}};\frac{2}{3\text{a}}=\frac{2.\left(a-2\right)}{3\text{a}\left(a-2\right)}=\frac{2\text{a}-4}{3\text{a}^2-6\text{a}};\frac{5\text{a}-4}{3\text{a}^2-6\text{a}}\)giữ nguyên
3) \(\frac{x}{10\text{x}-10}=\frac{x.3\text{x}}{\left(10\text{x}-10\right).3\text{x}}=\frac{3\text{x}^2}{30\text{x}^2-30};\frac{1}{3\text{x}-3}=\frac{1.10\text{x}}{10\text{x}.\left(3\text{x}-3\right)}=\)\(\frac{10\text{x}}{30\text{x}^2-30\text{x}};\frac{9\text{x}-10}{30\text{x}^2-30\text{x}}\)giữ
4) \(\frac{1}{1-a}==\frac{-1}{a-1}=\frac{-1.\left(a^2+a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}=\frac{-a^2-a-1}{a^3-1};\frac{1}{a^2+a+1}=\frac{1.\left(a-1\right)}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\frac{a-1}{a^3-1};\frac{a^3+2}{a^3-1}\)giữ nguyên
1. \(x^3-x+\frac{1}{2}=x^4-x^2+\frac{1}{4}+x^2-x+\frac{1}{4}=\left(x^2-\frac{1}{2}\right)^2+\left(x-\frac{1}{2}\right)^2\ge0\)
Nếu \(\left(x^2-\frac{1}{2}\right)^2+\left(x-\frac{1}{2}\right)^2=0\)thì \(\hept{\begin{cases}x-\frac{1}{2}=0\\x^2-\frac{1}{2}=0\end{cases}=>\hept{\begin{cases}x=\frac{1}{2}\\x^2=\frac{1}{2}\end{cases}}}\)(VÔ LÍ)
Vậy \(x^4-x+\frac{1}{2}>0\)
1)\(4\left(a^4-1\right)x=5\left(a-1\right)\)
<=>x=\(\frac{5\left(a-1\right)}{a^4-1}\)
<=>x=\(\frac{5\left(a-1\right)}{\left(a-1\right)\left(a+1\right)\left(a^2+1\right)}=\frac{5}{\left(a+1\right)\left(a^2+1\right)}\)
Tương tự ta tính được y=\(\frac{4a^6+4}{5a^4-5a^2+5}\)
Suy ra x.y=\(\frac{5}{\left(a+1\right)\left(a^2+1\right)}.\frac{4\cdot\left(a^6+1\right)}{5\left(a^4-a^2+1\right)}\)=\(\frac{5}{\left(a+1\right)\left(a^2+1\right)}.\frac{4\left(a^2+1\right)\left(a^4-a^2+1\right)}{5\left(a^4-a^2+1\right)}\)
=\(\frac{5}{a+1}\)
Tương tự với x:y
\(A=\frac{4.6}{4.2}:\left(\frac{8.10}{6.8}.\frac{12.14}{10.12}.\frac{16.18}{14.16}...\frac{54.56}{54.53}\right)=\frac{6}{2}:\frac{56}{6}=\)
a) \(2\left(x-1\right)-a\left(x-1\right)=2a+3\)
\(\Leftrightarrow2a-2-ax+a=2a+3\)
\(\Leftrightarrow-2-ax+a=3\)
\(\Leftrightarrow-a\left(x-1\right)=5\)
\(\Leftrightarrow\left(x-1\right)=\frac{-5}{a}\Leftrightarrow x=\frac{a-5}{a}\)
b) \(\frac{x+1}{2}+\frac{x+2}{3}+\frac{x+3}{4}=3\)
\(\Leftrightarrow\frac{12x+12+8x+16+6x+18}{24}=3\)
\(\Leftrightarrow12x+12+8x+16+6x+18=72\)
\(\Leftrightarrow26x+46=72\)
\(\Leftrightarrow26x=26\Leftrightarrow x=1\)
Đặt phép chia đc x2-ax-5a2-1/4=(x+2a)(x-3a)+(a2-1/4)
thương trên là phép chia hết <=>a2-1/4=0<=>a \(\in\) {-1/2;1/2}