K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2021

`(x+1)/(x^{3}+2x^{2}-4x-5)`

`=(x+1)/(x^{3}+x^{2}+x^{2}+x-5x-5)`

`=(x+1)/(x^{2}(x+1)+x(x+1)-5(x+1))`

`=(x+1)/((x+1)(x^{2}+x-5)`

`=1/(x^{2}+x-5)`

Chỗ này sao tìm đc Amax?

Đề thiếu rồi

22 tháng 5 2021

Không đúng vì x2-x-5 chưa chắc >0?

NV
22 tháng 8 2020

\(x=\frac{\sqrt{5}-1}{2}\Leftrightarrow2x+1=\sqrt{5}\)

\(\Rightarrow4x^2+4x+1=5\)

\(\Rightarrow4x^2+4x-4=0\)

\(\Rightarrow x^2+x-1=0\)

\(\Rightarrow-x^2=x-1\Rightarrow-x^3=x^2-x\)

\(B=\left[4x^3\left(x^2+x-1\right)-x^3+2x-2\right]^2+2021\)

\(=\left(-x^3+2x-2\right)^2+2021\)

\(=\left(x^2-x+2x-2\right)^2+2021\)

\(=\left(x^2+x-1-1\right)^2+2021\)

\(=\left(-1\right)^2+2021=2022\)

1 tháng 8 2017

a) Để \(\sqrt{\dfrac{3}{x-5}}\) có nghĩa thì :

\(\dfrac{3}{x-5}\ge0\) mà 3 > 0 nên => x - 5 > 0 <=> x > 5

b) Để \(\sqrt{\dfrac{x-3}{x+5}}\) có nghĩa thì :

\(\dfrac{x-3}{x+5}\ge0\) ; x \(\ne-5\)

Ta có bảng xét dấu :

x x-3 x+5 (x-3)/(x+5) -5 3 0 0 0 - - + - + + + - +

=> x \(\le-5\) Hoặc x \(\ge3\)

c) Để \(A=\sqrt{x-3}-\sqrt{\dfrac{1}{4-x}}\) có nghĩa thì :

x - 3 \(\ge\) 0 <=> x \(\ge3\)

\(\dfrac{1}{4-x}\ge0\) mà 1 > 0 nên => 4 - x > 0 <=> x < 4

d) Để \(B=\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{x^2-4x+4}}\) = \(\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{\left(x-2\right)^2}}\) có nghĩa thì :

\(x-1\ge0< =>x\ge1\)

\(\dfrac{2}{\left|x-2\right|}\ge0\) Mà 2 > 0 nên => | x - 2 | >0 <=> x -2 \(\ge\) 0 <=> x \(\ge2\)

e) \(\text{Đ}\text{ể}:C=\sqrt{\dfrac{-3}{x-5}}\) có nghĩa thì :

\(\dfrac{-3}{x-5}\ge0\)

Mà -3 < 0 nên => x -5 < 0 <=> x < 5

F) Để \(D=3+\sqrt{x^2-9}\) có nghĩa thì :

\(\sqrt{x^2-9}=\sqrt{\left(x+3\right)\left(x-3\right)}< =>\left(x+3\right)\left(x-3\right)\ge0\)

Ta có bảng xét dấu :

x x+3 x-3 tích 0 0 0 0 - + + - - + -3 3 + - +

=> x \(\le-3\) Hoặc x \(\ge3\)

g) Để \(E=\dfrac{1}{1-\sqrt{x-1}}\) có nghĩa thì :

x -1 \(\ge0\) mà 1 > 0 nên => x - 1 > 0 <=> x > 1

h) Để H = \(\sqrt{x^2+2x+3}=\sqrt{\left(x+2\right)\left(x+3\right)}\) có nghĩa thì :

( x + 2)(x + 3) \(\ge0\)

Ta có bảng xét dấu :

x x+2 x+3 tích -3 -2 0 0 0 0 - - + - + + + - +

=> \(x\le-3\) Hoặc x \(\ge-2\)

1 tháng 8 2017

a )\(\dfrac{\sqrt{3}}{x-5}\)

\(\sqrt{3}\) > 0

<=> x-5 >0

=>x > 5