\(a\in N\)nhỏ nhất sao cho a chia 3, 5, 7 được số dư lần lượt là 2, 3,4

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2020

Vì a chia cho 3,5,7 được số dư lần lượt là 2,3,4 nên ta có : \(\hept{\begin{cases}a-2⋮3\\a-3⋮5\\a-4⋮7\end{cases}}\)

\(\Rightarrow\)2a-1 chia hết cho cả 3,5,7

Mà a nhỏ nhất nên 2a-1 nhỏ nhất

\(\Rightarrow\)2a-1 là BCNN(3,5,7)

Ta có : 3=3

           5=5

           7=7

\(\Rightarrow\)BCNN(3,5,7)=3.5.7=105

\(\Rightarrow\)a=53

Vậy a=53.

16 tháng 1 2020

Số đó là 53

23 tháng 2 2019

Câu hỏi của Kz9 - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo câu b ở link này nhé

23 tháng 2 2019

ok chj

Gọi số tự nhiên nhỏ nhất đó là a . Ta có :

a = 3k + 2 ( k \(\in\)N ) \(\Rightarrow\)a + 52 = 3k + 54 chia hết cho 3

a = 5k1 + 3 ( k1 \(\in\)N ) \(\Rightarrow\)a + 52 = 5k1 + 55 chia hết cho 5

a = 7k2 + 4 ( 7k2 \(\in\)N ) \(\Rightarrow\)a + 52 = 7k2 + 56 chia hết cho 7

\(\Rightarrow\)a + 52 \(\in\)BC ( 3 , 5 , 7 ) . Mà a nhỏ nhất nên a + 52 nhỏ nhất .

\(\Rightarrow\)a + 52 = BCNN ( 3 , 5 , 7 ) = 3 . 5 . 7 = 105

\(\Rightarrow\)a = 105 - 52 = 53

Vậy số đó là 53

a) Gọi ƯCLN (21n+4 ; 14n+3) =d              ( ĐK: d \(\inℕ^∗\))

=> \(\hept{\begin{cases}21n+4\\14n+3\end{cases}}\)\(⋮\)d  

=> \(\hept{\begin{cases}2.\left(21n+4\right)\\3.\left(14n+3\right)\end{cases}}\)\(⋮\)d

=>\(\hept{\begin{cases}42n+8\\42n+9\end{cases}}\)\(⋮\)d

=> (42n+9) - (42n+8)   \(⋮\)d

       42n+9 - 42n - 8    \(⋮\)d

      ( 42n - 42n) + ( 9 - 8)  \(⋮\)d

=> 1\(⋮\)d

=> d = 1

=> ƯCLN ( 21n+4 ; 14n+3 ) = 1 

Vậy phân số \(\frac{21n+4}{14n+3}\)là phân số tối giản

b) mk k bt làm

Chúc bn hok tốt!!

Nếu đúng thì tk mk nha

5 tháng 3 2019

\(\text{Gọi ƯCLN( 21n + 4 , 14n + 3 ) là d}\)

\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow\text{Phân số }\frac{21n+4}{14n+4}\text{ là phân số tối giản}\)

16 tháng 5 2018

Bài giải 
Gọi số cần tìm là a
Ta có :
a chia 3 dư 2
\(\Rightarrow\)a-2 chia hết cho 3
\(\Rightarrow\)2(a-2) chia hết cho 3
\(\Rightarrow\)2a-4 chia hết cho 3
\(\Rightarrow\)2a-4+3 chia hết cho 3
\(\Rightarrow\)2a-1 chia hết cho a (1)
Ta có : a chia 5 dư 3
\(\Rightarrow\)a-3 chia hết cho 5
\(\Rightarrow\)2(a-3) chia hết cho 5
\(\Rightarrow\)2a-6 chia hết cho 5
\(\Rightarrow\)2a-6+5 chia hết cho 5
\(\Rightarrow\)2a-1 chia hết cho 5 (2)
Ta có a chia 7 dư 4
\(\Rightarrow\)a-4 chia hết cho 7
\(\Rightarrow\) 2 (a-4) chia hết cho 7
\(\Rightarrow\)2a-8 chia hết cho 7
\(\Rightarrow\)2a-8+7 chia hết cho 7 
\(\Rightarrow\)2a-1 chia  hết cho 7 (3)
Từ 1 ;2 và 3 ta có :
2a-1 chia hết cho 3;5;7
Mà a nhỏ nhất 
\(\Rightarrow\)2a-1 thuộc BCNN(3;5;7)=105
\(\Rightarrow\)2a-1=105
\(\Rightarrow\)2a=106
\(\Rightarrow\)a=53
Vậy số cần tìm là 53

16 tháng 5 2018

+ Vì a chia cho 3 dư 2 => a = 3k + 2 => 2a = 2(3k +2) = 6k + 4 = 6k + 3 + 1 = 3(2k+1) + 1 => 2a - 1\(⋮\)3 (1)

+ Vì a chia cho 5 dư 3 => a = 3h + 3 => 2a = 2(3h + 3) = 6h + 6 = 6h + 5 + 1 = 3(2h + 1) + 1 => 2a - 1 \(⋮\)5 (2)

+ Vì a chia cho 7 dư 4 => a = 3q + 4 => 2a = 2(3q + 4) = 6q + 8 = 6q + 7 + 1 = 3(2n + 1) + 1 => 2a - 1 \(⋮\)7 (3) 

Từ (1) ; (2) ; (3) => 2a - 1 \(\in\)BC(3,5,7) , Mà a là nhỏ nhất => 2a - 1 là BCNN(3,5,7) 

3 = 3 ; 5 = 5 ; 7 = 7 

=> BCNN (3,5,7) = 3.5.7 = 105 

=> 2a - 1 = 105 

=> 2a = 105 + 1 

=> 2a = 106 

=> a = 106 : 2 

=> a = 53

29 tháng 8 2021

Bài 1: 
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2
​n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 ​chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53

Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9)
 ​chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) ​chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài

29 tháng 8 2021

Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).

Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài

Bài 2: 

Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).

Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài

4 tháng 11 2015

1818 nhá bạn
Tick mình nha

13 tháng 11 2015

a chia 3;5;7 dư 2;4;6

=>a+1 chia hết cho 3;5;7

mà a nhỏ nhất 

=>a+1 thuộc BCNN(3;5;7)=3.5.7=105

=>a=104