Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(VT=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1=VP\)
Vậy \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=2^{32}-1\)
Đề sai bạn nhé. Đưa dữ kiện 3 ẩn bắt tính biểu thức chứa 2 ẩn làm sao làm được ?
Bạn kiểm tra lại nha
Áp dụng tc dãy tỉ số bằng nhau ta có
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)
\(\Rightarrow a+b+c=a+b-c\)
\(\Rightarrow a+b+c-a-b+c=0\)
\(\Rightarrow2c=0\)
\(\Rightarrow c=0\)
\(\frac{x+1}{203}+\frac{x+2}{202}+\frac{x+3}{201}+\frac{x+4}{200}+\frac{x+5}{199}+5=0\)
\(\Leftrightarrow\frac{x+1}{203}+1+\frac{x+2}{202}+1+\frac{x+3}{201}+1+\frac{x+4}{200}+1+\frac{x+5}{199}+1=0\)
\(\Leftrightarrow\frac{x+204}{203}+\frac{x+204}{202}+\frac{x+204}{201}+\frac{x+204}{200}+\frac{x+204}{199}=0\)
\(\Leftrightarrow\left(x+204\right)\left(\frac{1}{203}+\frac{1}{203}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\right)=0\)
\(\Leftrightarrow x+204=0\).Do \(\frac{1}{203}+\frac{1}{203}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\ne0\)
\(\Leftrightarrow x=-204\)
Ta có :
\(\frac{x+1}{203}+\frac{x+2}{202}+\frac{x+3}{201}+\frac{x+4}{200}+\frac{x+5}{199}+5=0\)
\(\Leftrightarrow\left(\frac{x+1}{203}+1\right)+\left(\frac{x+2}{202}+1\right)+\left(\frac{x+3}{201}+1\right)+\left(\frac{x+4}{200}+1\right)+\left(\frac{x+5}{199}+1\right)=0\)
\(\Leftrightarrow\left(\frac{x+204}{203}\right)+\left(\frac{x+4}{202}\right)+\left(\frac{x+4}{201}\right)+\left(\frac{x+204}{200}\right)+\left(\frac{x+204}{199}\right)=0\)
\(\Leftrightarrow\left(x+204\right)\left(\frac{1}{203}+\frac{1}{202}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\right)=0\)
Dễ thấy \(\left(\frac{1}{203}+\frac{1}{202}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\right)\ne0\)
=> x + 204 = 0
<=> x = - 204
Vậy pt có nghiệm x = - 204
a)hình như đề sai thì phải
sửa lại
\(\left(\dfrac{1}{7}-\dfrac{2}{5}\right).\dfrac{2016}{2017}+\left(\dfrac{13}{7}+\dfrac{2}{5}\right).\dfrac{2016}{2017}\)
=\(\dfrac{2016}{2017}.\left(\dfrac{1}{7}-\dfrac{2}{5}+\dfrac{13}{7}+\dfrac{2}{5}\right)\)
=\(\dfrac{2016}{2017}.2=\dfrac{4032}{2017}\)
\(S=\left(\frac{1}{7}\right)^2+\left(\frac{2}{7}\right)^2+\left(\frac{3}{7}\right)^2+...+\left(\frac{10}{7}\right)^2\)
\(=\frac{1^2}{7^2}+\frac{2^2}{7^2}+\frac{3^2}{7^2}+...+\frac{10^2}{7^2}\)
\(=\frac{1^2+2^2+3^2+...+10^2}{7^2}\)
\(=\frac{385}{49}=\frac{55}{7}\)
Vậy S = \(\frac{55}{7}\)
Ta có : 49S= \(1^2+2^2+...+10^2\)
49S= 385
S = \(\frac{385}{49}=\frac{55}{7}.\)
Ta có: A=1.2+2.3+3.4+4.5+..............+100.101
B=1.3+2.4+3.5+4.6+...............+100.102
Vậy A-B=(1.2+2.3+3.4+4.5+..............+100.101)-(1.3+2.4+3.5+4.6+...............+100.102)
=(1.2-1.3)+(2.3-2.4)+(3.4-3.5)+(4.5-4.6)+..........+(100.101-100.102)
=(-1)+(-2)+(-3)+(-4)+..........+(-100)
=-(1+2+3+4+.........+100) có (100-1)+1=100 số hạng
=\(-\left[\left(100+1\right).100:2\right]\)
=-5050
Chúc bạn học tốt!
Ta có:A=\(\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+....+\left(\frac{1}{2}\right)^{99}\right]\)
\(\frac{1}{2}A\)=\(\frac{1}{2}\)\(\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{4}\right)^4+....+\left(\frac{1}{2}\right)^{99}\right]\)
\(\frac{1}{2}A\)=\(\left[\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+\left(\frac{1}{2}\right)^5+...+\left(\frac{1}{2}\right)^{100}\right]\)
\(\frac{1}{2}A-A\)=\(\left[\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+\left(\frac{1}{2}\right)^5+...+\left(\frac{1}{2}\right)^{100}\right]\)-\(\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+....+\left(\frac{1}{2}\right)^{99}\right]\)
\(-\frac{1}{2}A\)=\(\left(\frac{1}{2}^{100}\right)-\frac{1}{2}\)
\(-\frac{1}{2}A\)=\(-\frac{1}{2}\)
A=\(-\frac{1}{2}:\left(-\frac{1}{2}\right)\)
A=1
Chúc bạn học tốt!
Cảm ơn bạn nhiều!!!