\(A\cup B\) . Với \(A=\left[-4;-2\right]\) ,
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left(A\cap B\right)\cap C=(4;10]\cap\left(5;+\infty\right)=(5;10]\)

c: A\B=[3;4]

B\C=(4;5]

C\A=[3;5]

d: (A\B) giao C=[3;4] giao (5;+\(\infty\))=[4;5)

16 tháng 5 2017

a) \(A\cap B=\)[\(1;2\)) \(\cup\) (\(3;5\)]

b) \(A\cap B=\)\(\left(-1;0\right)\cup\left(4;5\right)\))

Bài 3: 

a: \(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)

b: \(\left(-\dfrac{11}{2};7\right)\cup\left(-2;\dfrac{27}{2}\right)=\left(-\dfrac{11}{2};\dfrac{27}{2}\right)\)

c: \(\left(0;12\right)\text{\[}5;+\infty)=\left(0;5\right)\)

d: \(R\[ -1;1)=\left(-\infty;-1\right)\cup[1;+\infty)\)

NV
20 tháng 9 2020

\(A=(-\infty;1]\cup[4;+\infty)\)

\(B=\left[-5;5\right]\)

\(A\cap B=\left[-5;1\right]\cup\left[4;5\right]\)

\(A\backslash B=(-\infty;-5)\cup\left(5;+\infty\right)\)

\(A\cup B=\left(-\infty;+\infty\right)\)

NV
30 tháng 9 2020

\(\left|x-3\right|>4\Rightarrow\left[{}\begin{matrix}x-3>4\\x-3< -4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x>7\\x< -1\end{matrix}\right.\)

\(\Rightarrow A=\left(-\infty;-1\right)\cup\left(7;+\infty\right)\)

\(\left|2x-1\right|< 2\Leftrightarrow-2< 2x-1< 2\Leftrightarrow-\frac{1}{2}< x< \frac{3}{2}\)

\(\Rightarrow B=\left(-\frac{1}{2};\frac{3}{2}\right)\)

\(A\cap B=\varnothing\)

\(A\backslash B=A\)

\(A\cup B=\left(-\infty;-1\right)\cup\left(-\frac{1}{2};\frac{3}{2}\right)\cup\left(7;+\infty\right)\)

Bài 1:Cho các tập hợp A=(-∞ ; m) và B=(3m-1; 3m+3) Tìm m để: a, \(A\cap B=\varnothing\)(đs m\(\ge\dfrac{1}{2}\)) b,\(B\subset A\)( đs m<\(\dfrac{-3}{2}\)) c,\(A\subset C_RB\)(đs m\(\ge\dfrac{1}{2}\)) d,\(C_RA\cap B\ne\varnothing\)( đs m \(\ge\dfrac{-3}{2}\)) Bài 2: Cho A=\(\left(-\infty;-2\right)\)và B=\(\left(2m+1;+\infty\right)\). Tìm m để A\(\cup\)B=R Bài 3: a, Tìm m để (1 ; m) \(\cap\) (2 ; +\(\infty\))\(\ne\varnothing\) b, Viết tập A gồm các phần...
Đọc tiếp

Bài 1:Cho các tập hợp A=(-∞ ; m) và B=(3m-1; 3m+3) Tìm m để:

a, \(A\cap B=\varnothing\)(đs m\(\ge\dfrac{1}{2}\))

b,\(B\subset A\)( đs m<\(\dfrac{-3}{2}\))

c,\(A\subset C_RB\)(đs m\(\ge\dfrac{1}{2}\))

d,\(C_RA\cap B\ne\varnothing\)( đs m \(\ge\dfrac{-3}{2}\))

Bài 2: Cho A=\(\left(-\infty;-2\right)\)và B=\(\left(2m+1;+\infty\right)\). Tìm m để A\(\cup\)B=R

Bài 3:

a, Tìm m để (1 ; m) \(\cap\) (2 ; +\(\infty\))\(\ne\varnothing\)

b, Viết tập A gồm các phần tử x thỏa mãn điều kiện\(\left\{{}\begin{matrix}x\le3\\x+1\ge\\x< 0\end{matrix}\right.0}\)

với x+1\(\ge0\)dưới dạng tập số.

Bài 4:

Cho A=(m;m+2) và B+(n;n+1). Tìm điều kiện của các số m và n để A\(\cap\)B=\(\varnothing\)

Bài 5:

Cho tập hợp A=\(\left(m-1;\dfrac{m+1}{2}\right)\)và B=\(\left(-\infty;-2\right)\cup\left(2;+\infty\right)\). Tìm m để:

a, \(A\cap B\ne\varnothing\)

b, \(A\subset B\)

c, \(B\subset A\)

d, \(A\cap B=\varnothing\)

Bài 6:Cho 2 tập khác rỗng: A=(m-1 ; 4) và B=(-2 ; 2m+2), với ác định m để:

a, A\(\cap B\ne\varnothing\)

b, A\(\subset B\)

c,\(B\subset A\)

1

Bài 6:

a: Để A giao B khác rỗng thì 2m+2<=4 hoặc m-1>=-2

=>m<=1 hoặc m>=-1

b: Để A là tập con của B thì m-1>-2 và 4<=2m+2

=>m>-1 và 2m+2>=4

=>m>-1 và m>=1

=>m>=1

c: Để B là tập con của B thì m-1<-2 và 2m+2<=4

=>m<-1 và m<=1

=>m<-1