K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tìm abcd nếu

4.abcd = dcba

2
8 tháng 7 2019

\(\overline{abcd};\overline{dcba}\)là số tự nhiên có bốn chữ số

=> \(a,d\ne0\)

Và vì: \(4.\overline{abcd}=\overline{dcba}\)

=> a<3

TH1: a=1

Khi đó ta có: \(4.\overline{1bcd}=\overline{dcb1}\)

Loại vì không tồn tại số nhân với 4 được số tự nhiên tận cùng là 1

TH2: a=2

Khi đó ta có: \(4.\overline{2bcd}=\overline{dcb2}\)

=> d=3 hoặc d=8

+) Với d =3 ta có:

\(4.\overline{2bc3}=\overline{3cb2}\)loại ( vì 4.2=8>3)

+) Với d=8

ta có: \(4.\overline{2bc8}=\overline{8cb2}\)

<=> \(4.\left(2000+b.100+c.10+8\right)=8000+c.100+b.10+2\)

<=> \(390b-60c+30=0\)

<=> \(13b-2c+1=0\)

<=> \(c=\frac{13b+1}{2}\)

=> b=1 và c=7

Vậy số tự nhiên cần tìm là: 2178 và 4x2178=8712

Cô ơi e có cách giải mới mong cô xem qua 

Số cần tìm có dạng \(\overline{abcd}\)

Ta có 4.\(\overline{abcd}=\overline{dcba}\Rightarrow\overline{dcba}⋮4\Rightarrow a\in\left\{0;1;4;6;8\right\}\)

Xét các trường hợp thấy \(a\in0\)và nếu \(a\ge4\)thì \(4.\overline{abcd}\ge4.4000>9999\ge\overline{dcba}\)

và a=2 =>\(\overline{abcd}=\overline{dcba}\ge4.2000=8000=>d\in\left\{8;9\right\}\)

Mà \(\overline{dcba}=4\overline{abcd}\Rightarrow4.d\)phải tận cùng bằng chữ số a.

Mặt khác :4.8=32;4.9=36=>d=8

Ta có \(\overline{dcba}=100.dc+ba=2.5.4.dc+ba⋮4\)

=>ba\(⋮\)4

Vì a\(⋮\)2 theo trên =>b\(\in\){1;3;5;7;9}

Xét các trường hợp của b

Nếu \(b\ge3\Rightarrow\overline{8cba}\ge4.2300=9200\)(vô lí )

Nếu b : 1=>\(\overline{8bc12}=4.\overline{2108}\)

=>8012+100c=4.2108+4.10.c

=>60c=420

=>c=420:60

=>c=7

Vậy \(\overline{abcd}=2178\)

24 tháng 11 2016

Vì a,b,c,d là các chữ số
=> d<10
=> 0<a<3
mà 4 là số chẵn
=> dcba là số chẵn
=> a chẵn
=> a = 2
ta có 4. 2bcd = dcb2
=> d có thể nhận các giá trị 8 hoặc 9
mà một số có tận cùng là 8 nhân với 4 sẽ được số tận cùng là 2
=> d = 8
ta có 4. 2bc8 = 8cb2
<=> 4. (2000 + 100b + 10c + 8) = 8000 + 100c + 10b + 2
<=> 8000 + 400b + 40c + 32 = 8000 + 100c + 10b + 2
<=> 60c - 390b = 30
<=> 2c - 13b = 1
<=> 13b + 1 = 2c
mà 2c < 20
=> 13b < 19
=> b < 2
2c là số chẵn => b lẻ
=> b = 1
=> c = 7
thử lại thấy thỏa mãn
vậy số cần tìm là 2178

24 tháng 11 2016

a,b,c,d là các chữ số 
=> d<10 
=> 0<a<3 
mà 4 là số chẵn 
=> dcba là số chẵn 
=> a chẵn 
=> a = 2 
ta có 4. 2bcd = dcb2 
=> d có thể nhận các giá trị 8 hoặc 9 
mà một số có tận cùng là 8 nhân với 4 sẽ được số tận cùng là 2 
=> d = 8 
ta có 4. 2bc8 = 8cb2 
<=> 4. (2000 + 100b + 10c + 8) = 8000 + 100c + 10b + 2 
<=> 8000 + 400b + 40c + 32 = 8000 + 100c + 10b + 2 
<=> 60c - 390b = 30 
<=> 2c - 13b = 1 
<=> 13b + 1 = 2c 
mà 2c < 20 
=> 13b < 19 
=> b < 2 
2c là số chẵn => b lẻ 
=> b = 1 
=> c = 7 
thử lại thấy thỏa mãn 
vậy số cần tìm là 2178

9 tháng 2 2016

Bạn lấy từ đố vui mỗi tuần đúng không ?

9 tháng 2 2016

đây là bài toán số 89 nên đừng ai trả lời

7 tháng 10 2015

ta có vì abcd và dcba là số có 4 chữ số 
nên ta có : a.10^3 x 9 = d.10^3 => a =1 => d =9 
**Xét abcd : vì a =1 => b x 9 < số có 2 chữ số => b=1 hoặc b=0 
với b =1 thì 11c9 x 9 = 9c11 
vì b=1 =>11c9 x 9 có c x 9 là số bé hơn 2 chữ số => c =1 hoặc c =0 => vô lý 
với b = 0 thì 10c9 x 9 = 9c01 =>c = 8 
=> 1089 x 9 = 9801

27 tháng 12 2017

Câu hỏi của Vũ Ngọc Mai - Toán lớp 6 - Học toán với OnlineMath

24 tháng 4 2019

\(f\left(x\right)\)có hai nghiệm là x=-1 và x=1

ta có: \(f\left(1\right)=0\Leftrightarrow1^3+a+b-2=0\Leftrightarrow a+b=1\)(1)

\(f\left(-1\right)=\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)-2=0\Leftrightarrow a-b=3\)(2)

Từ (1) VÀ (2) TA CÓ: \(a=\frac{1+3}{2}=2;b=\frac{1-3}{2}=-1\)

b)Đề bài tìm số chính phương có bốn chữ số khác nhau ?

Đặt : \(\overline{abcd}=n^2;\overline{dcba}=m^2\)(g/s m, n là các số tự nhiên)

Theo bài ta có các giả thiết sau:  

\(1000\le m^2,n^2\le9999\Rightarrow32\le m;n\le99\)(1)

\(m^2⋮n^2\Rightarrow m⋮n\)(2)

=> Đặt m=kn (k là số tự nhiên, K>1)

Ta có: \(\hept{\begin{cases}32\le n\le99\\32\le m\le99\end{cases}\Rightarrow}\hept{\begin{cases}32.k\le kn\le99k\\32\le kn\le99\end{cases}\Rightarrow}32k\le kn\le99\Rightarrow k\le\frac{99}{32}\Rightarrow k\le3\)

Vậy nên k=2 hoặc bằng 3

Vì \(m=kn\Rightarrow m^2=k^2.n^2\Rightarrow\overline{dcba}=k^2.\overline{abcd}\)

+) Với k=2

Ta có: \(\overline{dcba}=4.\overline{abcd}\)

Vì  \(\overline{abcd};\overline{dcba}\)là các số chính phương có 4 chữ số khác nhau \(\Rightarrow d,a\in\left\{1;4;6;9;\right\}\)

và \(\overline{dcba}⋮\overline{abcd}\)nên d>a(2)

@) Khi \(a\ge4\Rightarrow\overline{dcba}\ge4.\overline{4bcd}>9999\)(loại)

Nên a=1.

Ta có: \(\overline{dcb1}=4.\overline{1bcd}\)vô lí vì không có số \(d\in\left\{1;4;6;9;\right\}\)nhân với 4 bằng 1

+) Với K=3

tương tự lập luận trên ta có a=1

Ta có: \(\overline{dcb1}=9.\overline{1bcd}\)=> d=9

Ta có: \(\overline{9cb1}=9.\overline{1bc9}\Leftrightarrow9000+c.100+b.10+1=9\left(1000+b.100+c.10+9\right)\)

\(\Leftrightarrow10c=890b+80\Leftrightarrow c=89b+8\)vì c, b là các số tự nhiên từ 0, đến 9

=> b=0; c=8

=> Số cần tìm 1089 và 9801 thỏa mãn với các điều kiện bài toán