K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2016

Vì cả 3 số hạng đều có mũ chẵn và tổng bằng 0

=>(2a+1)^2=0

=>2a+1=0

=>2a=-1

=>a=-0,5

=>b=-3

=>c=1,2

17 tháng 7 2018

a, Ta có: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\)<0

Vì (2a+1)2 >=0;(b+3)^4>=0;(5c-6)2 >=0

\(\Rightarrow\)Không tìm được a,b,c

11 tháng 8 2018

a) Vì \(\left(2a+1\right)^2\ge0\left(\forall a\right)\)

        \(\left(b+3\right)^4\ge0\left(\forall b\right)\)

        \(\left(5c-6\right)^2\ge0\left(\forall c\right)\)

\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^6\ge0\)

Mà ở đây, đề bài bảo: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^6\le0\)

=> Vô lí

=> Phương trình vô nghiệm

b;c Tương tự

10 tháng 2 2020

\(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\le0\left(1\right)\)

Ta có:\(\hept{\begin{cases}\left(2a+1\right)^2\ge0;\forall a,b,c\\\left(b+3\right)^4\ge0;\forall a,b,c\\\left(5c-6\right)^2\ge0;\forall a,b,c\end{cases}}\)\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\ge0;\forall a,b,c\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(2a+1\right)^2=0\\\left(b+3\right)^4=0\\\left(5c-6\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{-1}{2}\\b=-3\\c=\frac{6}{5}\end{cases}}\)

Vậy \(\left(a,b,c\right)=\left(\frac{-1}{2};-3;\frac{6}{5}\right)\)

27 tháng 6 2021

a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)

\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)

\(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)

Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)

- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)

Vậy ...

b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;

27 tháng 6 2021

ok

29 tháng 9 2016

Vì \(\left(2a+1\right)^2\ge0;\left(b+3\right)^4\ge0;\left(5c-6\right)^4\ge0\)

\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\ge0\)

Mà theo đề bài: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\le0\)

\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2=0\)

\(\Rightarrow\begin{cases}\left(2a+1\right)^2=0\\\left(b+3\right)^4=0\\\left(5c-6\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}2a+1=0\\b+3=0\\5c-6=0\end{cases}\)\(\Rightarrow\begin{cases}2a=-1\\b=-3\\5c=6\end{cases}\)\(\Rightarrow\begin{cases}a=\frac{-1}{2}\\b=-3\\c=\frac{6}{5}\end{cases}\)

Vậy \(a=\frac{-1}{2};b=-3;c=\frac{6}{5}\)