Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co'
(x+a).(x-4)-7=(x+b).(x+c)
nen voi x=4 thi
-7=(4+b)(4+c)=-7.1=7.(-1)
do a,c,b∈Z va b,c co vai tro nhu nhau nen gia su b>=c
co 2 TH xay ra
**{4+b=7│4+c=-1}↔{b=3│c=-5}suy ra a=2
ta co(x+2)(x-4_-7=(x+3)(x-5)
** {4+b=1│4+c=-7}↔{b=-3│c=-11} suy ra a=-10
ta co(x-10)(x-4)-7=(x-3)(x-11)
\(\left(x+a\right)\left(x+b\right)\left(x+c\right)=\left(x^2+bx+ax+ab\right)\left(x+c\right)\)
\(=x^3+cx^2+bx^2+bcx+ax^2+acx+abx+abc\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+ac+bc\right)x+abc\)
Đồnh nhất đa thức trên với đa thức \(x^3+ax^2+bx+c\),ta đc hệ điều kiện:
\(\hept{\begin{cases}a+b+c=a\left(1\right)\\ab+ac+bc=b\left(2\right)\\abc=c\left(3\right)\end{cases}}\)
Từ \(\left(1\right)a+b+c=a=>b+c=0=>c=-b\)
Thay vào (2),ta đc: \(ab+a.\left(-b\right)+b.\left(-b\right)=b=>ab-ab-b^2=b=>-b^2=b\)
\(=>b^2+b=0=>b\left(b+1\right)=0=>\orbr{\begin{cases}b=0\\b=-1\end{cases}}\)
+b=0 thì từ (1) suy ra c=0 ; a tùy ý
+b=-1 thì từ (1) suy ra c=1
Mà theo (3)\(abc=c=>a=\frac{c}{bc}=\frac{1}{-1}=-1\)
Vậy a=-1 hoặc a tùy ý ;b=0 hoặc b=-1;c=0 hoặc c=1