Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 2a = 3b ; 5b =7c
Từ giả thiết 2a = 3b => \(\frac{a}{3}=\frac{b}{2}\)=>\(\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}=>\frac{a}{21}=\frac{b}{14}\)
5b = 7c => \(\frac{b}{7}=\frac{c}{5}=>\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}=>\frac{b}{14}=\frac{c}{10}\)
Do đó: \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\) và 3a + 5c -7b = 30
Ta đặt \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=k\)
Suy ra a= 21k, b= 14k, c= 10k
Theo giả thiết: 3a + 5c - 7b = 30 =>3.21k + 5.10k - 7.14k = 30
=>63k + 50k - 98k= 30 => 15k = 30=> k= 2
Vậy a = 21.2=42
b = 14.2= 28
c = 10.2=20.
2. Bạn giải như bài trên nha!
Ta có : \(2a=3b\) \(\Rightarrow\) \(\frac{a}{3}=\frac{b}{2}\) \(\Rightarrow\) \(\frac{a}{21}=\frac{b}{14}\)
\(5b=7c\) \(\Rightarrow\) \(\frac{b}{7}=\frac{c}{5}\) \(\Rightarrow\) \(\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\) \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)
( Tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\) \(a=42;b=28;c=20\)
Ta có: 2a=3b;5b=7c\(\Leftrightarrow\frac{a}{3}=\frac{b}{2},\frac{b}{7}=\frac{c}{5}\Leftrightarrow\frac{1}{7}\times\frac{a}{3}=\frac{1}{7}\times\frac{b}{2},\frac{b}{7}\times\frac{1}{2}=\frac{c}{5}\times\frac{1}{2}\)
<=> \(\frac{a}{21}=\frac{b}{14},\frac{b}{14}=\frac{c}{10}\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
<=> \(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\) và 3a - 7b + 5c = - 30
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{-30}{15}=-2\)
Do đó: \(\frac{a}{21}=-2\Rightarrow a=-42\)
\(\frac{b}{14}=-2\Rightarrow-28\)
\(\frac{c}{10}=-2\Rightarrow c=-20\)
Vậy 3 số a,b,c lần lượt là -42;-28 và -20.
3a=2b => a/2 = b/3 => a/14 = b/21
5b = 7c => b/7 = c/5 => b/21 = c/15
=> a/14 = b/21= c/15
= \(\frac{3a}{42}=\frac{7b}{147}=\frac{5c}{75}=\frac{3a+5c-7b}{42+75-147}=\frac{60}{-30}=-2\)
=> a = -2.14 = -28
b = -2.21 = -42
c= -2 . 15= -30
Ta có : \(\frac{a+3}{5}=\frac{b-2}{3}=\frac{c-1}{7}=\frac{3a+9}{15}=\frac{5b-10}{15}=\frac{5c-5}{35}=\frac{3a+9-5b+10+5c-5}{15-15+35}=\frac{86+14}{35}\)
\(=\frac{100}{35}=\frac{20}{7}\)
Nên : bạn thay vào từng cái 1 nhé mình mỏi tay :D
3a+5c=7b+30
=>3a+5c-7b=30
\(2a=3b=>\frac{a}{3}=\frac{b}{2}=>\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}=>\frac{a}{21}=\frac{b}{14}\)
\(5b=7c=>\frac{b}{7}=\frac{c}{5}=>\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}=>\frac{b}{14}=\frac{c}{10}\)
\(=>\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)
\(=>\frac{a}{21}=2=>a=21.2=42\)
\(=>\frac{b}{14}=2=>b=14.2=28\)
\(=>\frac{c}{10}=2=>c=10.2=20\)
Vậy a=42,b=28,c=20.
\(2a=2b\Rightarrow\frac{a}{2}=\frac{b}{2}\Rightarrow\frac{a}{2}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}\Rightarrow\frac{a}{14}=\frac{b}{14}\)
\(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}\Rightarrow\frac{b}{14}=\frac{c}{10}\)
(Ngoặc '}' 2 điều trên lại)
\(\Rightarrow\frac{a}{14}=\frac{b}{14}=\frac{c}{10}\)(1)
Từ (1) \(\Rightarrow\frac{3a}{3.14}=\frac{7b}{7.14}=\frac{5c}{5.10}=\frac{3a}{42}=\frac{7b}{98}=\frac{5c}{50}\)
Áp dụng tính chất DTSBN:
\(\frac{a}{14}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{42}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{42-98+50}=\frac{-30}{-6}=5\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{14}=5\Rightarrow a=5.14=70\\\frac{b}{14}=5\Rightarrow a=5.14=70\\\frac{c}{10}=5\Rightarrow c=5.10=50\end{cases}}\)
Vậy a = 70, b = 70, c = 50
minh tran
ta có 2a=3b =>a=3b/2
5b=7c =>c=5b/7
=>3.3b/2+5.5b/7+7b=30
=>9b/2+25b/7+7b=30
=>63b/14+50b/14+93b/14=30
=>211b/14=30
=>211/14.b=30
=>211/14.30=b
=>6330/14=b
=>3165/7=b
=>9495/7=3b=2a
=>a=9495/14
tương tự c= vượt giới hạn tính