K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

cần ko?cần thì để t giải cho

24 tháng 2 2022

Giải:

Vì a∈Z+

⇒5b=a3+3a2+5>a+3=5c

⇒5b>5c⇒b>c

⇒5b⋮5c

⇒a3+3a2+5⋮a+3

⇒a2(a+3)+5⋮a+3

Mà a2(a+3)⋮a+3

⇒5⋮a+3

⇒a+3∈Ư(5)

⇒a+3∈{±1;±5}(1)

Do a∈Z+⇒a+3≥4(2)

Từ (1) và (2)

⇒a+3=5

⇒a=5−3

⇒a=2(∗)

Thay (∗) vào biểu thức ta có:

23+3.22+5=5b⇔b=2

2+3=5c⇔c=1

Vậy: 

10 tháng 11 2021

\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\\ \Leftrightarrow\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{a+b}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Leftrightarrow\left\{{}\begin{matrix}b+c=2a\left(1\right)\\c+a=2b\left(2\right)\\a+b=2c\left(3\right)\end{matrix}\right.\\ \Leftrightarrow\left(1\right)-\left(2\right)=b-a=2a-2b\Leftrightarrow a-b=0\Leftrightarrow a=b\\ \left(2\right)-\left(3\right)=c-b=2b-2c\Leftrightarrow b-c=0\Leftrightarrow b=c\\ \left(3\right)-\left(1\right)=a-c=2c-2a\Leftrightarrow a-c=0\Leftrightarrow a=c\)

Vậy \(a=b=c\)

11 tháng 11 2021

độ kiên chì của bạn là bao nhêu vậy

 

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=2\)

\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)

vậy \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=6\)

8 tháng 7 2021

Help me plskhocroi

 

NV
22 tháng 3 2021

Đề đúng không em nhỉ?

Đề bài thế này vẫn tính được a;b;c, nhưng số rất xấu (căn thức, lớp 7 chưa học)

Biểu thức thứ hai: \(b+bc+c=5\) phải là \(b+bc+c=8\) hoặc 3; 15; 24; 35; 48... gì đó mới hợp lý, nghĩa là cộng thêm 1 phải là 1 số chính phương

29 tháng 12 2015

đặt a/2014=b/2015=c/2016=k

=>a=2014k;b=2015k;c=2016k

=>4(a-b)(b-c)=4(2014k-2015k)(2015k-2016k)

=4.k(2014-2015).k92015-2016)=4.k.(-1).k.(-1)=4.k^2(1)

=>(c-a)(c-a)=(c-a)^2=(2016k-2014k)(2016k-2014k)=[k(2016-2014)]^2=[k.2]^2=k^2.4(2)

từ (1)và (2)=>4(a-b)(b-c) = (c-a).(c-a)

10 tháng 10 2016

giả sử :c^2>a^2>b^2 khi đó ta có :

\(\frac{b^2+c^2}{a^2+3}+\frac{c^2-a^2}{b^2+4^2}+\frac{a^2-b^2}{c^2+5}\le\frac{b^2+c^2}{b^2+3}+\frac{c^2-a^2}{b^2+3}+\frac{a^2-b^2}{b^2+3}=\frac{2c^2}{b^2+3}\le\frac{2}{3}.c^2\)

Như vậy ta có :\(a^2+b^2+c^2\le\frac{2}{3}.c^2\). Điều này xảy ra khi a=b=c

                 chuc bn hk tốt!

Do  a < b < c < d < m < n 
=> 2c < c + d 
m< n => 2m < m+ n 
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n) 
Do đó :
\(\dfrac{\text{(a + c + m)}}{\left(a+b+c+d+m+n\right)}\) < \(\dfrac{1}{2}\)