K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

ab = c

bc = 4a

ac = 9b

=> (ab).(bc).(ac) = c.(4a).(9b)

=> abc2 = 36.abc => (abc)2- 36.abc = 0 => abc. (abc - 36) = 0  => abc = 0 hoặc abc = 36

+) Nếu abc = 0 => c.c = 0 => c = 0 => 4a = bc = 0 => a = 0 => b = 0 

+) Nếu abc = 36 => (ab).c = 36 => c.c = 36 => c = 6 hoặc c = - 6

c = 6 =>  4a = bc = 6b => a = 3b/2 Mà ab = 6 => (3b/2).b = 6 => b2= 6.2/3 = 4 => b = 2 hoặc b = -2 => a = 3 hoặc a = - 3

Tương tự với c = - 6 : ...

Vậy....

16 tháng 7 2018

ab = c 

bc = 4a 

ca = 9b =

=> c = 9 b = 4 

49 = bc= 4a 

a + b = c 

a = 9 - 4 = 5 

45 = 9 

49 = 45 

95 = 94 

thoải mạn yêu cầu


 

18 tháng 7 2016

 ab=c => a=c/b (1) 
bc=4a => a=(bc)/4 (2) 
Từ (1) và (2) => c/b = (bc)/4 
<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2 

(*) Với b=2 thì 
(1) => a=c/2 <=> c=2a 
ta có: ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a=3 hoặc a=-3 
_ với a=3 thì c= 2*3 = 6 (thỏa) 
_với a=-3 thì c= 2*-3 =-6 (thỏa) 

(*) Với b=-2 thì 
(1) => a=c/-2 <=> c=-2a 
ta có: ac=9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3 
_ với a=3 thì c= -2*3 = -6 (thỏa) 
_với a=-3 thì c= -2*-3 =6 (thỏa) 
Vậy S= { (3;2;6) ; (-3;2;-6) ; (3;-2;-6) ; (-3;-2;6) } 

18 tháng 7 2016

Theo đề bài suy ra: \(ab.bc.ca=c.4a.9b\)

=>\(a^2.b^2.c^2=36abc\)

=>\(\left(abc\right)^2=36abc\)

=>\(\left(abc\right)^2:abc=36\)

=>\(abc=36\)

=>\(\hept{\begin{cases}ab=36:c\\ac=36:b\\bc=36:a\end{cases}}\)

Ta có:

  • ab=c => 36:c=c  => c2=36  =>\(c\in\left\{-6;6\right\}\)
  • bc=4a => 36:a=4a => 4a2=36 => a2=9 => \(a\in\left\{-3;3\right\}\)
  • ac=9b => 36:b=9b => 9b2=36 => b2=4 => \(b\in\left\{-2;2\right\}\)

Vậy .....

18 tháng 1 2016

a=9;b=4;c=36

Tick mk vài cái lên 290 nha !!!

18 tháng 1 2016

a=9

b=4

c=36

Câu a: → Giả sử a,b,c có một số bằng 0. 
Vai trò a,b,c như nhau, không mất tính tổng quát giả sử a = 0 thì: 
gt <=> bc = 0 
<=> b = 0 hoặc c = 0 
Tức là sẽ có 2 nghiệm: (0,0,c) hoặc (0,b,0) (b,c ở đây tùy ý) 
Tóm lại, trường hợp này có 3 bộ số thỏa mãn là: (a,0,0); (0,0,c) hoặc (0,b,0) 
với a,b,c trong mỗi bộ là là các chữ số tùy ý từ 0 → 9. Thay số mỗi bộ chạy từ 1 → 9 thì ta có mỗi họ nghiệm trên có 9 nghiệm => có 9.3 = 27 nghiệm 
Cộng thêm 1 bộ (0,0,0) chung nữa là có tất cả 28 nghiệm cho trường hợp này. 

→ Nếu a,b,c đều khác 0: 
Chia cả 2 vế gt cho abc đc: 
1/a + 1/b + 1/c = 1 (♦) 
Từ (♦) suy ra a,b,c ≥ 2 vì nếu một trong 3 số bằng 1, giả sử a = 1 thì: 
1 + 1/b + 1/c = 1 <=> 1/b + 1/c = 0 (vô lý) 
Do đó ta giả sử tiếp 
2 ≤ a ≤ b ≤ c thì: 1/a ≥ 1/b ≥ 1/c 
=> 1 = 1/a + 1/b + 1/c ≤ 3/a 
=> 3 ≥ a ≥ 2 

***Nếu a = 2: 1/b + 1/c + ½ = 1 <=> 1/b + 1/c = ½ (♥) 
=> ½ = 1/b + 1/c ≤ 2/b 
=> b ≤ 4 
Do b > 2 (b = 2 thì (♥) <=> ½ + 1/c = ½ → vô lý) nên b = 3 hoặc b = 4 
+ Với b = 3 thì 1/c + 1/3 = ½ <=> c = 6 
Ta được cặp (2,3,6) thỏa mãn 
+ Với b = 4 thì 1/c + 1/4 = ½ <=> c = 4 
Ta đc cặp (2,4,4) thỏa mãn 

***Nếu a = 3 thì: 
1/b + 1/c = 2/3 
=> 2/3 = 1/b + 1/c ≤ 2/b 
=> b ≤ 3 => mà do b ≥ a = 3 nên chỉ có thể là b = 3 
Thay vào được c = 3 
Trường hợp này ta chỉ có một cặp (3,3,3) 

Tóm lại trường hợp a,b,c > 0 ta có 10 cặp sau thỏa mãn: 
(3,3,3); (2,4,4); (4,2,4); (4,4,2); (2,3,6); (2,6,3); (3,2,6); (3,6,2); (6,3,2);(6,2,3)

Câu b:

 Ký hiệu (abcd) là số tự nhiên có 4 chữ số. 
(abcd) + (abc) + (ab) + (a) = 1111.a + 111.b + 11.c + d 
Vậy 1111.a + 111.b + 11.c + d = 4321 
+ Nếu a < 3 => 111.b + 11.c + d > 2098 (vô lý vì b, c, d < 10) 
+ Nếu a > 3 => vế trái > 4321 
Vậy a = 3 => 111.b + 11.c + d = 988 
+ Nếu b < 8 => 11.c + d > 210 (vô lý vì c, d < 10) 
+ Nếu b > 8 => vế trái > 988 
Vậy b = 8 => 11.c + d = 100 
+ Nếu c < 9 => d > 11 (vô lý) 
Vậy c = 9; d = 1 
=> (abcd) = 3891

14 tháng 2 2016

khó @gmail.com

2 tháng 1 2016

 Ta có: a.b=c => b.c=b(a.b)=4a => a.b^2=4a (1) 
Với a=0 => a=b=c=0 
Với a khác 0 => (1) <=> b^2 =4 => b=2 hoặc b=-2 
TH1: Với b=2 => ac=9b => a(ab) = a^2.b = 9b => a^2=9 => a=3 hoặc a=-3 
+ a=3 => c = a.b = 3.2 = 6 
+ a=-3 => c =a.b = (-3).2=-6 
Tương tự với b=-2(bạn tự giải như trường hợp 1) 
Vậy nghiệm của phương trình (a,b,c)=(3;2;6);(-3;2;-6);(0;0;0); 
(3;-2;-6);(-3;-2;6)

2 tháng 1 2016

đây là toán lớp 7
 

31 tháng 3 2019

a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:

ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
​a=3
b=2
c=6

2 tháng 4 2019

cam ơn