Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\frac{1}{x\left(x^2+1\right)}=\frac{a}{x}+\frac{bx+c}{x^2+1}\Rightarrow\frac{1}{x\left(x^2+1\right)}=\frac{\left(a+b\right)x^2+cx+a}{x\left(x^2+1\right)}\)
Dong nhat 2 phan thuc tren ta duoc:
\(\hept{\begin{cases}a+b=0\\c=0\\a=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=-1\\c=0\\a=1\end{cases}}}\)
b, \(\frac{1}{x^2-4}=\frac{a}{x-2}+\frac{b}{x+2}\Rightarrow\frac{1}{x^2-4}=\frac{\left(a+b\right)x+2\left(a-b\right)}{x^2-4}\)
Dong nhat 2 phan thuc tren ta duoc:
\(\hept{\begin{cases}\left(a+b\right)x=0\\2\left(a-b\right)=1\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=0\\a-b=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}a=\frac{1}{4}\\b=\frac{-1}{4}\end{cases}}}\)
2, \(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}\)
<=>\(\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)
<=>\(\frac{3}{10}x^2+\frac{2}{15}y^2+\frac{1}{20}z^2=0\)
<=>x=y=z=0
4,
a, \(\frac{1}{x\left(x^2+1\right)}=\frac{a}{x}+\frac{bx+c}{x^2+1}\)
=>\(\frac{1}{x\left(x^2+1\right)}=\frac{ax^2+a+bx^2+cx}{x\left(x^2+1\right)}=\frac{\left(a+b\right)x^2+cx+a}{x\left(x^2+1\right)}\)
Đồng nhất 2 phân thức ta được:
\(\hept{\begin{cases}a+b=0\\c=0\\a=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=-1\\c=0\\a=1\end{cases}}}\)
b,a=1/4,b=-1/4
c, a=-1,b=1,c=1
Phương trình đã cho tương đương:
\(\frac{1}{x\left(x^2+1\right)}=\frac{a\left(x^2+1\right)+bx^2+c}{\text{x}\left(x^2+1\right)}\)
<=> ax^2 + a + bx^2 +cx= 1
Nếu k cho điều kiện của a,b,c thì chỉ làm dc đến đó thôi, có lẽ pahri cần a,b,c nguyên chăng?
\(\frac{1}{x\left(x^2+1\right)}=\frac{a}{x}+\frac{bx+c}{x^2+1}\)
\(\frac{1}{x+\left(x^2+1\right)}=\frac{\text{ã}^2+a+bx^2+cx}{x\left(x^2+1\right)}\)
\(\frac{1}{x\left(x^2+1\right)}=\frac{x^2\left(a+b\right)+cx+a}{x\left(x^2+1\right)}\)
Đồng nhất với phân thức \(\frac{1}{x\left(x^2+1\right)}\)ta được:
\(a+b=0\)\(c=0\)\(a=1\)
\(\Rightarrow b=-1\)
Vậy:\(\frac{1}{x\left(x^2+1\right)}=\frac{1}{x}-\frac{x}{x^2+1}\)
tích hộ nha.Học tốt
Ta có \(\frac{x^2+1}{x^3-1}=\frac{a}{x-1}+\frac{bx+c}{x^2+x+1}\)
\(\Rightarrow\frac{x^2+1}{x^3-1}=\frac{a.\left(x^2+x+1\right)}{x^3-1}+\frac{\left(x-1\right).\left(bx+c\right)}{x^3-1}\)
\(\Rightarrow\frac{x^2+1}{x^3-1}=\frac{ax^2+ax+a}{x^3-1}+\frac{bx^2-xc-xb-c}{x^3-1}\)
\(\Rightarrow\frac{x^2+1}{x^3-1}=\frac{x^2.\left(a+b\right)+x.\left(a-b-c\right)+\left(a-c\right)}{x^3-1}\)
Đồng nhất hệ số hai vế của tử số ta có
\(\hept{\begin{cases}a+b=1\\a-b-c=0\\a-c=1\end{cases}\Rightarrow}\hept{\begin{cases}a+b=1\\a-c=b\\a-c=1\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=1\\c=0\end{cases}}}\)