Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left|f\left(0\right)\right|=\left|c\right|\le k.\)
\(\left|f\left(1\right)\right|=\left|a+b+c\right|\le k\Leftrightarrow-k\le a+b+c\le k.\)(1)
\(\left|f\left(-1\right)\right|=\left|a-b+c\right|=\left|-a+b-c\right|\le k\Leftrightarrow-k\le-a+b-c\le k\).(2)
Cộng lần lượt các vế của (1) và (2) ta có: \(-2k\le2b\le2k\Leftrightarrow-k\le b\le k\Leftrightarrow\left|b\right|\le k.\)
Mặt khác ta có: \(\hept{\begin{cases}-k\le a+b+c\le k\\-k\le a-b+c\le k\end{cases}\Rightarrow-2k\le2a+2c\le2k\Leftrightarrow-k\le a+c\le k.}\)
Chọn c = k thì \(-k\le a+k\Leftrightarrow-2k\le a.\)
Chọn c = k thì \(a-k\le k\Leftrightarrow a\le2k.\) Vậy \(\left|a\right|\le2k\).
Ta có: \(\left|a\right|+\left|b\right|+\left|c\right|\le2k+k+k=4k\left(đpcm\right).\)
Bài 1 :
Gọi f( x ) = 2n2 + n - 7
g( x ) = n - 2
Cho g( x ) = 0
\(\Leftrightarrow\)n - 2 = 0
\(\Rightarrow\)n = 2
\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7
\(\Rightarrow\)f( 2 ) = 3
Để f( x ) \(⋮\)g( x )
\(\Rightarrow\)n - 2 \(\in\)Ư( 3 ) = { \(\pm\)1 ; \(\pm\)3 }
Ta lập bảng :
n - 2 | 1 | - 1 | 3 | - 3 |
n | 3 | 1 | 5 | - 1 |
Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }
a) gọi Q(x) là thương khi chia f(x) cho g(x)
khi đó ta có dạng: f(x)=g(x).Q(x)=> f(x)=(x+3)(Q(x) (1)
Vì (1) luôn đúng vs mọi x nên thay x=-3 vào (1) ta đc:
f(-3)= \(\left(-3\right)^3+3.\left(-3\right)^2+5.\left(-3\right)+a=0\) 0
<=> \(-15+a=0\)
<=>a=15
Vậy vs a=15 thì f(x) chia hết cho g(x)
\(f\left(x\right)=3x^k\left(a.x^2+bx+c\right)=3a.x^{k+2}+3b.x^{k+1}+3c.x^k\)
\(g\left(x\right)=3x^{k+2}-12x^k+3^k\)
Mà \(f\left(x\right)=g\left(x\right)\)nên theo hệ số bất định ta có:\(\hept{\begin{cases}3a=3\\3b=0\\3c=-12\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=0\\c=-4\end{cases}}\)
Và \(3^k=0\)vô lí vì không tìm được k thỏa mãn
Suy ra có thể bạn viết đề sai?
Nếu đề đúng thì Kết luận:không tìm được a,b,c thỏa mãn đề bài