\(f\left(x\right)=3x^k\left(\text{a.x}^2+bx+c\right)\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

\(f\left(x\right)=3x^k\left(a.x^2+bx+c\right)=3a.x^{k+2}+3b.x^{k+1}+3c.x^k\)

\(g\left(x\right)=3x^{k+2}-12x^k+3^k\)

Mà \(f\left(x\right)=g\left(x\right)\)nên theo hệ số bất định ta có:\(\hept{\begin{cases}3a=3\\3b=0\\3c=-12\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=0\\c=-4\end{cases}}\)

Và \(3^k=0\)vô lí vì không tìm được k thỏa mãn

Suy ra có thể bạn viết đề sai?

15 tháng 7 2019

Nếu đề đúng thì Kết luận:không tìm được a,b,c thỏa mãn đề bài

28 tháng 9 2016

Ta có: \(\left|f\left(0\right)\right|=\left|c\right|\le k.\) 
\(\left|f\left(1\right)\right|=\left|a+b+c\right|\le k\Leftrightarrow-k\le a+b+c\le k.\)(1)

\(\left|f\left(-1\right)\right|=\left|a-b+c\right|=\left|-a+b-c\right|\le k\Leftrightarrow-k\le-a+b-c\le k\).(2)
Cộng lần lượt các vế của (1) và (2) ta có: \(-2k\le2b\le2k\Leftrightarrow-k\le b\le k\Leftrightarrow\left|b\right|\le k.\)
Mặt khác ta có: \(\hept{\begin{cases}-k\le a+b+c\le k\\-k\le a-b+c\le k\end{cases}\Rightarrow-2k\le2a+2c\le2k\Leftrightarrow-k\le a+c\le k.}\)
Chọn c = k thì \(-k\le a+k\Leftrightarrow-2k\le a.\)
Chọn c = k thì \(a-k\le k\Leftrightarrow a\le2k.\) Vậy \(\left|a\right|\le2k\).
Ta có: \(\left|a\right|+\left|b\right|+\left|c\right|\le2k+k+k=4k\left(đpcm\right).\)


 

28 tháng 9 2016

Em cảm ơn cô nhiều ạ : ) Bùi Thị Vân

26 tháng 11 2019

Bài 1 : 

Gọi f( x )  = 2n2 + n - 7

       g( x ) = n - 2

Cho g( x )  = 0

\(\Leftrightarrow\)n - 2 = 0

\(\Rightarrow\)n      = 2

\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7

\(\Rightarrow\)f( 2 )  = 3

Để f( x ) \(⋮\)g( x )

\(\Rightarrow\)n - 2 \(\in\)Ư( 3 )  = { \(\pm\)1 ; \(\pm\)3 }

Ta lập bảng :

n - 21- 13- 3
n315- 1

Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }

26 tháng 11 2019

2n^2+n-7 n-2 2n+6 2n^2-4n 6n-7 6n-12 5

Để \(2n^2+n-7⋮n-2\) thì \(5⋮n-2\)

Làm nốt

16 tháng 8 2017

a) gọi Q(x) là thương khi chia f(x) cho g(x)

khi đó ta có dạng: f(x)=g(x).Q(x)=> f(x)=(x+3)(Q(x)   (1)

Vì (1) luôn đúng vs mọi x nên thay x=-3 vào (1) ta đc:

f(-3)= \(\left(-3\right)^3+3.\left(-3\right)^2+5.\left(-3\right)+a=0\) 0

    <=> \(-15+a=0\)

<=>a=15

Vậy vs a=15 thì f(x) chia hết cho g(x)