K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2020

Ta có: \(a^2+b^2+c^2+4\le ab+3b+2c\)

Hay: \(\left(a^2-ab+\frac{b^2}{4}\right)+\left(\frac{3b^2}{4}-3b+3\right)+\left(c^2-2c+1\right)\le0\)

\(\Leftrightarrow\left(a-\frac{b}{2}\right)^2+3\left(\frac{b}{2}-1\right)^2+\left(c-1\right)^2\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}c-1=0\\\frac{b}{2}-1=0\\a-\frac{b}{2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=1\end{matrix}\right.\)

Vậy .....................

18 tháng 2 2020
https://i.imgur.com/opfONj4.jpg
18 tháng 11 2019

Violympic toán 8

15 tháng 12 2017

Làm tạm vào đây vậy

từ gt dễ dàng => \(ab+bc+ca\le3\)

\(\Rightarrow\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{c^2+ab+bc+ca}}=\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng cô si ta có

\(\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)\)

Tương tự như vậy rồi ccộng vào nhá nhok

22 tháng 5 2020

Bó tay!!! 🐷

22 tháng 5 2020

chuẩn