\(\ne\)0 thỏa mãn:

\(\frac{xy}{ax+by}\)=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2019

Ta có:

\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}\left(x;y;z\ne0\right)\)

=> \(\frac{xyz}{azy+bxz=}=\frac{xyz}{xbz+xcy}=\frac{yzx}{ycx+azy}\)

=>\(zay+bxz=xbz+xyc=ycx+azy\)

\(\Rightarrow\hept{\begin{cases}za=cx\\bx=ay\end{cases}}\)

Đặt \(\frac{x}{a}=\frac{z}{c}=\frac{y}{b}=t\left(t\ne0\right)\)

=> x = at ; z = ct  ; y = bt

\(\frac{xy}{ay+bx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Rightarrow\)\(\frac{atbt}{abt+bat}=\frac{a^2t^2+b^2t^2+c^2t^2}{a^2+b^2+c^2}\)

\(\Rightarrow\frac{t}{2}=t^2\Rightarrow t=\frac{1}{2}\)

\(\Rightarrow t=\frac{1}{2}\Rightarrow\hept{\begin{cases}x=\frac{a}{2}\\y=\frac{b}{2}\\z=\frac{c}{2}\end{cases};\left(a,b,c\ne0\right)}\)

25 tháng 2 2019

Câu hỏi của Hacker Chuyên Nghiệp:tham khảo

AH
Akai Haruma
Giáo viên
24 tháng 7 2017

Lời giải:

Từ \(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{xz}{az+cx}\Leftrightarrow \frac{1}{\frac{a}{x}+\frac{b}{y}}=\frac{1}{\frac{b}{y}+\frac{c}{z}}=\frac{1}{\frac{a}{x}+\frac{c}{z}}\)

Đặt \(\left (\frac{a}{x},\frac{b}{y},\frac{c}{z}\right)=(m,n,p)\Rightarrow \frac{1}{m+n}=\frac{1}{n+p}=\frac{1}{m+p}\)

Do đó \(m=n=p\). Thay \(n,p\) bằng \(m\)

\(\Rightarrow \frac{a}{x}=\frac{b}{y}=\frac{c}{z}=m\Rightarrow a=mx,b=my,c=mz\)

\(\frac{1}{m+n}=\frac{1}{2m}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2+y^2+z^2}{m^2(x^2+y^2+z^2)}=\frac{1}{m^2}\)\(\Rightarrow m=2\)

Vậy \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=m+n+p=3m=3.2=6\)