Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{2}\)=\(\frac{b}{3}\)\(\frac{c}{4}\)=\(\frac{a+2b-c}{2+6-4}\)=\(\frac{20}{4}\)=5
\(\frac{a}{2}\)= 5 suy ra a=2.5=10
\(\frac{b}{3}\)=5 suy ra b=3.5=15
\(\frac{c}{4}\)=5 suy ra c=4.5=20
vậy a=10,b=15,c=20
2
2x-\(\frac{2}{3}\)=\(\frac{1}{3}\)
2x=\(\frac{1}{3}\)+ \(\frac{2}{3}\)
2x=1
x=1:2
x=\(\frac{1}{2}\)
k cho mình nhé có cơ hội thì kết bạn luôn
a) Ta có :
\(\frac{x}{3}\) và \(\frac{y}{4}\)và \(x.y=192\)
Đặt \(x=y=k\)
\(\Rightarrow x=3k\)
\(y=4k\)
Mà \(3k.4k=192\)
\(\Rightarrow12k^2=192\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k=\hept{\begin{cases}4\\-4\end{cases}}\)
Thay \(k=4\) và \(k=-4\)vào biểu thức \(x\) ta có :
\(x=3.4=12\)
\(x=3.\left(-4\right)=-12\)
Thay \(k=4\)và \(k=-4\)vào biểu thức \(y\)ta có :
\(y=4.4=16\)
\(y=4.\left(-4\right)=-16\)
Vậy \(x=\hept{\begin{cases}12\\-12\end{cases}}\)
và \(y=\hept{\begin{cases}16\\-16\end{cases}}\)
b)
:\(\frac{x}{5}\)và \(\frac{y}{4}\)và \(x^2+y^2=1\)
Ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{x^2+y^2}{5^2+4^2}=\frac{1}{41}\)
\(\Leftrightarrow\frac{x}{5}=\frac{1}{41}\)
\(\Leftrightarrow x=\frac{5}{41}\)
và \(\frac{y}{4}=\frac{1}{41}\)
\(\Leftrightarrow y=\frac{4}{41}\)
Vậy \(\)\(x=\frac{5}{41}\)và \(y=\frac{4}{41}\)
a) \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}=k\)
\(\Rightarrow\hept{\begin{cases}a=2k+1\\b=3k-2\\c=4k+3\end{cases}}\)thay vào \(3a-2b+c=-46\)
\(\Rightarrow3\left(2k+1\right)-2\left(3k-2\right)+4k+3=-46\)
\(\Leftrightarrow6k+3-\left(6k-4\right)+4k+3=-46\)
\(\Leftrightarrow4k+10=-46\Rightarrow4k=-56\Rightarrow k=-14\)
\(\Rightarrow\hept{\begin{cases}a=2.\left(-14\right)+1=-27\\b=3.\left(-14\right)-2=-44\\c=4.\left(-14\right)+3=-53\end{cases}}\)
Vậy \(a=-27;b=-44;c=-53\)
b) \(\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\left(1\right)\)
\(\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}\)
\(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)
\(\Rightarrow\hept{\begin{cases}a=12.6=72\\b=12.15=180\\c=12.20=240\end{cases}}\)
Vậy \(a=72;b=180;c=240\)
a, \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}\)
\(\Rightarrow\frac{3a-3}{6}=\frac{2b+4}{6}=\frac{c-3}{4}=\frac{3a-3-2b-4+c-3}{6-6+4}=\frac{\left(3a-2b+c\right)-\left(3+4+3\right)}{4}=\frac{-46-10}{4}=-14\)
=> \(\hept{\begin{cases}\frac{a-1}{2}=-14\\\frac{b+2}{3}=-14\\\frac{c-3}{4}=-14\end{cases}}\Rightarrow\hept{\begin{cases}a=-27\\b=-44\\c=-53\end{cases}}\)
b) \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\\\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\end{cases}\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)
=> a = 72, b=180, c=240
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y-z}{5+4-3}=\dfrac{18}{6}=3\)
Do đó: x=15; y=12; z=9
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{c}{7}=\dfrac{a+2b+c}{5+2\cdot4+7}=\dfrac{10}{20}=\dfrac{1}{2}\)
Do đó: a=5/2; b=2; c=7/2
e: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{2}=\dfrac{a+b}{4+5}=\dfrac{10}{9}\)
Do đó: a=40/9; b=50/9; c=20/9
f: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2a+b-c}{2\cdot2+3-4}=\dfrac{-12}{3}=-4\)
Do đó: a=-8; b=-12; c=-16