Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> \(f\left(x\right)=\left(x+2\right)a\left(x\right)\)và \(f\left(x\right)=\left(x^2-1\right)b\left(x\right)+\left(x+5\right)\)
=> \(f\left(-2\right)=0\)
\(f\left(1\right)=1+5=6\)
\(f\left(-1\right)=-1+5=4\)
=> \(f\left(2\right)=8a-2b+c=0\)
\(f\left(1\right)=a+b+c=6\)
\(f\left(-1\right)=-a-b+c=4\)
Đến đây rồi bạn tự làm nhé
Đa thức \(\left(x+1\right)\left(x+2\right)\)có nghiệm \(\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
Vì -1 và -2 là hai nghiệm của đa thức \(\left(x+1\right)\left(x+2\right)\)
Mà để đa thức ax3 + bx + 12 chia hết cho \(\left(x+1\right)\left(x+2\right)\)thì -1 và -2 là hai nghiệm của đa thức ax3 + bx + 12
Nếu x = -1 thì \(-a-b+12=0\Leftrightarrow a+b=12\)(2)
Nếu x = -2 thì \(-8a-2b+12=0\Leftrightarrow4a+b=6\)(1)
Lấy (1) - (2), ta được: \(3a=-6\Leftrightarrow a=-2\)
\(\Rightarrow b=12+2=14\)
Vậy a = -2, b = 14
\(\left(x+1\right)\left(x+2\right)=x^2+3x+2\)
Rồi OK.T sẽ làm theo hướng khác.
\(\Rightarrow x\left(b+7a\right)+6\left(a+2\right)=0\Rightarrow a=-2;b=14\)
P/S:Chọn phông chữ Hellvea vì chữ to cho dễ nhìn:)
\(a,\Leftrightarrow2x^3-x^2+ax+b=\left(x-1\right)\left(x+1\right)\cdot a\left(x\right)\)
Thay \(x=1\Leftrightarrow2-1+a+b=0\Leftrightarrow a+b=-1\)
Thay \(x=-1\Leftrightarrow-2-1-a+b=0\Leftrightarrow b-a=3\)
Từ đó ta được \(\left\{{}\begin{matrix}a+b=-1\\-a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=1\end{matrix}\right.\)
\(b,\Leftrightarrow ax^3+bx^2+2x-1=\left(x-1\right)\left(x+6\right)\cdot b\left(x\right)\)
Thay \(x=1\Leftrightarrow a+b+2-1=0\Leftrightarrow a+b=-1\)
Thay \(x=-6\Leftrightarrow-216a+36b+12-1=0\Leftrightarrow216a-36b=11\)
Từ đó ta được \(\left\{{}\begin{matrix}a+b=-1\\216a-36b=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{25}{252}\\b=-\dfrac{227}{252}\end{matrix}\right.\)
\(c,\Leftrightarrow ax^4+bx^3+1=\left(x+1\right)^2\cdot c\left(x\right)\)
Thay \(x=-1\Leftrightarrow a-b+1=0\Leftrightarrow b=a+1\)
\(\Leftrightarrow ax^4+\left(a+1\right)x^3+1⋮\left(x+1\right)\\ \Leftrightarrow ax^4+ax^3+x^3+1⋮\left(x+1\right)\\ \Leftrightarrow ax^3\left(x+1\right)+\left(x+1\right)\left(x^2-x+1\right)⋮\left(x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(ax^3+x^2-x+1\right)⋮\left(x+1\right)\\ \Leftrightarrow ax^3+x^2-x+1⋮\left(x+1\right)\)
Thay \(x=-1\Leftrightarrow-a+1+1+1=0\Leftrightarrow a=3\Leftrightarrow b=4\)
1: \(x^3+3x^2-x-3=\left(x-2\right)\left(x^2+bx+c\right)+a\)
\(\Leftrightarrow x^3-2x^2+5x^2-10x+11x-22+19=\left(x-2\right)\left(x^2+bx+c\right)+a\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+5x+11\right)+19=\left(x-2\right)\left(x^2+bx+c\right)+a\)
=>b=5; c=11; c=19
2: \(4x^3+7x-6=\left(ax+b\right)\left(x^2+x+1\right)+c\)
\(\Leftrightarrow4x^3+4x^2+4x-4x^2-4x-4+7x-2=\left(ax+b\right)\left(x^2+x+1\right)+c\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(4x-4\right)+7x-2=\left(ax+b\right)\left(x^2+x+1\right)+c\)
=>a=4; b=-4; c=7x-2
Gợi ý thôi.
\(x^3-ax^2+bx-c=\left(x-a\right)\left(x-b\right)\left(x-c\right)\)
\(\Rightarrow x^3-ax^2+bx-c\)có ba nghiệm \(x=a,x=b,x=c\)
Theo định lí Vi-et:\(\hept{\begin{cases}a+b+c=a\\ab+bc+ca=b\\abc=c\end{cases}\Leftrightarrow}\hept{\begin{cases}b=-c\\ab+bc+ca=b\\c\left(ab-1\right)=0\end{cases}}\)