Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 ) Ta có :
\(x^3-x^2+2=x^3-x+x-x^2+2=x\left(x^2-1\right)+\left[\left(-x^2+1\right)+\left(x+1\right)\right]\)
\(=x\left(x-1\right)\left(x+1\right)+\left[-\left(x-1\right)\left(x+1\right)+\left(x+1\right)\right]\)
\(=x\left(x-1\right)\left(x+1\right)+\left(x+1\right)\left(2-x\right)\)
\(=\left(x+1\right)\left[x\left(x-1\right)+2-x\right]=\left(x+1\right)\left(x^2-2x+2\right)\)
\(\Rightarrow\left(x^2+cx+2\right)\left(ax+b\right)=\left(x^2-2x+2\right)\left(x+1\right)\)
Đồng nhất ta được : \(\hept{\begin{cases}a=1\\b=1\\c=-2\end{cases}}\)
2 ) làm tương tự
a) TA có :
\(\left(x^2+cx+2\right)\left(ax+b\right)=ax^3+bx^2+acx^2+bcx+2ax+2b\)
\(=ax^3+x^2\left(b+ac\right)+x\left(bc+2a\right)+2b\) = \(=x^3-x^2-2\)
=> a = 1
=>\(2b=-2\Rightarrow b=-1\)
=> b + ac = -1 => -1 + 1.c = -1 => -1 + c = -1 => c = -1 + 1 = 0
VẬy a = 1 ; b = -1 ; c = 0
\(\left(x^2+cx+2\right)\left(ax+b\right)=x^3-x^2+2\) với mọi x
\(=>x^2\left(ax+b\right)+cx\left(ax+b\right)+2\left(ax+b\right)=x^3-x^2+2\) với mọi x
\(=>ax^3+bx^2+acx^2+bcx+2ax+2b=x^3-x^2+2\) với mọi x
\(=>ax^3+\left(ac+b\right)x^2+\left(2a+bc\right)x+2b=x^3-x^2+2\) với mọi x
\(=>\) ax3=x3 =>a=1
(ac+b)x2=-x2=>ac+b=-1=>c+b=-1 (vì a=1) (1)
(2a+bc)x=0=>2a+bc=0=>2+bc=0 (vì a=1)=>bc=-2
2b=2=>b=1
Thay vào (1) => c=-1-1=-2
Vậy a=1;b=1;c=-2
câu sau tương tự
Bạn chỉ việc nhân ra ròi cho nó bằng hệ số của từng cái là đc thôi