Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CÁC BÀI NÀY ĐỀU GIẢI THEO TÍNH CHẤT DÃY TỈ SỐ BẮNG NHAU
a) ta có: 2a = 3b; 5b = 7c
\(\Rightarrow\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}\left(1\right);\frac{b}{14}=\frac{c}{10}\left(2\right)\)
VẾ (1) nhân cả 2 số với\(\frac{1}{7}\); VẾ (2) nhân cả hai số với \(\frac{1}{2}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAU, TA CÓ:
\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)
PHẦN SAU TỰ LÀM^-^
c) ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{a}{3}=\frac{b+1}{4}=\frac{c+2}{5}=\frac{a-b-1+c+2}{3-4+5}=\frac{a-b+c+1}{4}=\frac{-17}{4}\)
PHẦN SAU TỰ LÀM^-^
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{a^2}{2^2}=\frac{b^2}{3^2}=\frac{2c^2}{2.4^2}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a^2}{2^2}=\frac{b^2}{3^2}=\frac{2c^2}{2.4^2}=\frac{a^2-b^2+2c^2}{4-9+2.4^2}=\frac{108}{27}=4=2^2\)
\(\Rightarrow\begin{cases}a^2=2^2.2^2=4^2\\b^2=2^2.3^2=6^2\\c^2=2^2.2.4^2:2=8^2\end{cases}\)\(\Rightarrow\begin{cases}a\in\left\{4;-4\right\}\\b\in\left\{6;-6\right\}\\c\in\left\{8;-8\right\}\end{cases}\)
Vậy giá trị (a;b;c) thỏa mãn đề bài là: (4;6;8) ; (-4;-6;-8)
Giải:
Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\)
\(\Rightarrow a=2k,b=3k,c=4k\)
Ta có: \(a^2-b^2+2c^2=108\)
\(\Rightarrow\left(2k\right)^2-\left(3k\right)^2+2\left(4k\right)^2=108\)
\(\Rightarrow2^2.k^2-3^2.k^2+2.4^2.k^2=108\)
\(\Rightarrow4.k^2-9.k^2+32.k^2=108\)
\(\Rightarrow\left(4-9+32\right).k^2=108\)
\(\Rightarrow27.k^2=108\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2\)
+) \(k=2\Rightarrow a=4,b=6,d=8\)
+) \(k=-2\Rightarrow a=-4,b=-6,c=-8\)
Vậy bộ số \(\left(a;b;c\right)\) là \(\left(4;6;8\right);\left(-4;-6;-8\right)\)
b) áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a^2}{2^2}=\frac{b^2}{3^2}=\frac{2c^2}{2\cdot4^2}=\frac{a^2-b^2+2c^2}{2^2-3^2+2\cdot4^2}=\frac{108}{27}=4\)
\(\frac{a^2}{2^2}=4\Rightarrow a^2=4\cdot2^2=16\Rightarrow a=\sqrt{16}=4\)
\(\frac{b^2}{3^2}=4\Rightarrow b^2=4\cdot3^2=36\Rightarrow b=\sqrt{36}=6\)
\(\frac{2c^2}{2\cdot4^2}=4\Rightarrow2c^2=4\cdot2\cdot4^2=128\Rightarrow c^2=128:2=64\Rightarrow c=\sqrt{64}=8\)
vậy a = 4
b = 6
c = 8
a)
a:b:c = 2:4:5
=> a/2 = b/4 =c/5
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2a}{2\cdot2}=\frac{b}{4}=\frac{c}{5}=\frac{2a-b+c}{2\cdot2-4+5}=\frac{7}{5}\)
\(\frac{2a}{2\cdot2}=\frac{7}{5}\Rightarrow2a=\frac{7\cdot2\cdot2}{5}=\frac{28}{5}\Rightarrow a=\frac{28}{5}:2=\frac{14}{5}=2,8\)
\(\frac{b}{4}=\frac{7}{5}\Rightarrow b=\frac{7\cdot4}{5}=\frac{28}{5}=5,6\)
\(\frac{c}{5}=\frac{7}{5}\Rightarrow c=\frac{7\cdot5}{5}=7\)
vậy a = 2,8
b = 5,6
c = 7
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
\(\Rightarrow\frac{a^2}{2^2}=\frac{b^2}{3^2}=\frac{2c^2}{2.4^2}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> \(\frac{a^2}{4}=4\Rightarrow a^2=16\Rightarrow a=+-4\)
=> \(\frac{b^2}{9}=4\Rightarrow b^2=36\Rightarrow b=+-6\)
=>\(\frac{2c^2}{2.4^2}=4\Rightarrow c^2=16.4=64\Rightarrow c=+-8\)
Do a/2=b/3=c/4 và a^2-b^2+2c^2 nên
a/2=a/4; b/3=b/9; c/4=c/32 và a+b+c=108
Áp dụng tích chất của dãy tỉ số bằng nhau ta có
a/4=b/9=c/32=a+b+c/4+9+32=108/45=2,4
Do đó : a/4=2,4 => a=9,6
b/9=2,4 => b =21,6
c/32=2,4 => c=76,8
Vậy a=9,6; b=21,6 ; c=76,8
Áp dụng t/c của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) => \(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> \(\hept{\begin{cases}\frac{a^2}{4}=4\\\frac{b^2}{9}=4\\\frac{c^2}{16}=4\end{cases}}\) <=> \(\hept{\begin{cases}a^2=16\\b^2=36\\c^2=64\end{cases}}\) <=> \(\hept{\begin{cases}a=\pm4\\b=\pm6\\c=\pm8\end{cases}}\)
\(\frac{a}{5}=\frac{b}{4}\\ \Rightarrow\frac{a^2}{25}=\frac{b^2}{16}=\frac{a^2-b^2}{25-16}=\frac{1}{9}\\ \Rightarrow a^2=\frac{25}{9}\\ \Rightarrow a=\frac{5}{3}\)
tự tính b nhé
b) Câu b tương tự câu a .
Nếu ko biết hỏi mình
câu a bn làm kiểu j mik chẳng hiểu