Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) ta có: \(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}=\frac{2y-4}{6}\)
ADTCDTSBN
có: \(\frac{x-1}{5}=\frac{2y-4}{6}=\frac{z-2}{2}=\frac{x-1+2y-4-z+2}{5+6-2}\)\(=\frac{\left(x+2y-z\right)-\left(1+4-2\right)}{9}=\frac{6-3}{9}=\frac{3}{9}=\frac{1}{3}\)
=>...
bn tự tính típ nhé!
b) ta có: \(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{x^2+y^2}{4+9}=\frac{52}{13}=4\)
=>...
Bài 2:
a) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{b}\left(đpcm\right)\)
b) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\) (*)
mà \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
Từ (*) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)
a)
Gọi 3 phần của số A lần lượt là a, b, c.
Theo đề ta có:
\(\dfrac{a}{\dfrac{2}{5}}=\dfrac{b}{\dfrac{3}{4}}=\dfrac{c}{\dfrac{1}{6}}\) và \(a^2+b^2+c^2=24309\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{\dfrac{2}{5}}=\dfrac{b}{\dfrac{3}{4}}=\dfrac{c}{\dfrac{1}{6}}=\dfrac{a^2}{\left(\dfrac{2}{5}\right)^2}=\dfrac{b^2}{\left(\dfrac{3}{4}\right)^2}=\dfrac{c^2}{\left(\dfrac{1}{6}\right)^2}=\dfrac{a^2+b^2+c^2}{\dfrac{4}{25}+\dfrac{9}{16}+\dfrac{1}{36}}=\dfrac{24309}{\dfrac{2701}{3600}}=32400\)
\(\dfrac{a}{\dfrac{2}{5}}=32400\Rightarrow a=32400.\dfrac{2}{5}=12960\)
\(\dfrac{b}{\dfrac{3}{4}}=32400\Rightarrow b=32400.\dfrac{3}{4}=24300\)
\(\dfrac{c}{\dfrac{1}{6}}=32400\Rightarrow c=32400.\dfrac{1}{6}=5400\)
Vậy số A được chia thành 3 phần lần lượt là \(12960;24300;5400\)
b) Đặt: \(\dfrac{a}{c}=\dfrac{c}{b}=\dfrac{a+c}{b+c}=t\)
Ta có: \(\dfrac{a^2}{c^2}=\dfrac{c^2}{b^2}=\dfrac{a^2+c^2}{b^2+c^2}=t^2\)
\(\dfrac{a}{c}.\dfrac{c}{b}=t.t=\dfrac{a}{b}=t^2\)
Ta có đpcm
Bài 1:
\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)
\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)
\(=2007.\dfrac{1}{90}-3\)
\(=19,3\)
Vậy S = 19,3
5b)\(S=1+3+3^2+...+3^{2013}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{2014}\)
\(\Rightarrow3S-S=3^{2014}-1\)
\(\Rightarrow S=\dfrac{3^{2014}-1}{2}\)
a,
\(a+b=-9\\ b+c=2\\ c+a=-3\\ \Rightarrow a+b+b+c+c+a=\left(-9\right)+2+\left(-3\right)\\ 2a+2b+2c=-10\\ 2\left(a+b+c\right)=-10\\ a+b+c=-5\\ a+b=-9\\ \Rightarrow a+b+c=-5\Leftrightarrow\left(-9\right)+c=-5\Rightarrow c=4\\ b+c=2\\ \Rightarrow a+b+c=-5\Leftrightarrow a+2=-5\Rightarrow a=-7\\ c+a=-3\\ \Rightarrow a+b+c=-5\Leftrightarrow\left(-3\right)+b=-5\Rightarrow b=-2\)
Vậy \(a=-7;b=-2;c=5\)
b,
\(a+b=\dfrac{1}{2}\\ b+c=\dfrac{3}{4}\\ c+a=\dfrac{-5}{6}\\ \Rightarrow a+b+b+c+c+a=\dfrac{1}{2}+\dfrac{3}{4}+\dfrac{-5}{6}\\ 2a+2b+2c=\dfrac{6}{12}+\dfrac{9}{12}+\dfrac{-10}{12}\\ 2\left(a+b+c\right)=\dfrac{5}{12}\\ a+b+c=\dfrac{5}{24}\\ a+b=\dfrac{1}{2}\\ \Rightarrow a+b+c=\dfrac{5}{24}\Leftrightarrow\dfrac{1}{2}+c=\dfrac{5}{24}\Rightarrow c=\dfrac{-7}{24}\\ b+c=\dfrac{3}{4}\\ \Rightarrow a+b+c=\dfrac{5}{24}\Leftrightarrow a+\dfrac{3}{4}=\dfrac{5}{24}\Rightarrow a=\dfrac{-13}{24}\\ a+c=\dfrac{-5}{6}\\ \Rightarrow a+b+c=\dfrac{5}{24}\Leftrightarrow b+\dfrac{-5}{6}=\dfrac{5}{24}\Rightarrow b=\dfrac{25}{24}\)
Vậy \(a=\dfrac{-13}{24};b=\dfrac{25}{24};c=\dfrac{-7}{24}\)
c,
\(a+b=2\\ b+c=6\\ c+a=3\\ \Rightarrow a+b+b+c+c+a=2+6+3\\ 2a+2b+2c=11\\ 2\left(a+b+c\right)=11\\ a+b+c=5,5\\ a+b=2\\ \Rightarrow a+b+c=5,5\Leftrightarrow2+c=5,5\Rightarrow c=3,5\\ b+c=6\\ \Rightarrow a+b+c=5,5\Leftrightarrow a+6=5,5\Rightarrow a=-0,5\\ c+a=3\\ \Rightarrow a+b+c=5,5\Leftrightarrow b+3=5,5\Rightarrow b=2,5\)
Vậy \(a=-0,5;b=2,5;c=3,5\)
d,
\(a+b=\dfrac{5}{6}\\ b+c=\dfrac{3}{4}\\ c+a=\dfrac{5}{3}\\ \Rightarrow a+b+b+c+c+a=\dfrac{5}{6}+\dfrac{3}{4}+\dfrac{5}{3}\\ 2a+2b+2c=\dfrac{10}{12}+\dfrac{9}{12}+\dfrac{20}{12}\\ 2\left(a+b+c\right)=\dfrac{13}{4}\\ a+b+c=\dfrac{13}{8}\\ a+b=\dfrac{5}{6}\\ \Rightarrow a+b+c=\dfrac{13}{8}\Leftrightarrow\dfrac{5}{6}+c=\dfrac{13}{8}\Rightarrow c=\dfrac{19}{24}\\ b+c=\dfrac{3}{4}\\ \Rightarrow a+b+c=\dfrac{13}{8}\Leftrightarrow a+\dfrac{3}{4}=\dfrac{13}{8}\Rightarrow a=\dfrac{7}{8}\\ c+a=\dfrac{5}{3}\\ \Rightarrow a+b+c=\dfrac{13}{8}\Leftrightarrow b+\dfrac{5}{3}=\dfrac{13}{8}\Rightarrow b=\dfrac{-1}{24}\)
Vậy \(a=\dfrac{7}{8};b=\dfrac{-1}{24};c=\dfrac{19}{24}\)
\(\left\{{}\begin{matrix}a+b=-9\\b+c=2\\c+a=-3\end{matrix}\right.\)
\(\Rightarrow a+b+b+c+c+a=\left(-9\right)+2+\left(-3\right)\)
\(\Rightarrow2a+2b+2c=-10\)
\(\Rightarrow2\left(a+b+c\right)=-10\)
\(\Rightarrow a+b+c=-5\)
\(\Rightarrow\left\{{}\begin{matrix}c=-5-9=-14\\a=-5-2=-7\\b=-5-\left(-3\right)=-2\end{matrix}\right.\)
\(xy-3x-y=6\)
\(=>xy+3x-y-3=6-3\)
\(=>x\left(y+3\right)-\left(y+3\right)=3\)
\(=>\left(y+3\right)\left(x-1\right)=3\)
y+3 | -1 | 3 | 1 | -3 | |
x-1 | -3 | 1 | 3 | -1 |
y+3 | -1 | 3 | -3 | 1 |
y | -4 | -1 | -7 | -3 |
x-1 | -3 | 1 | 3 | -1 |
x | -2 | 2 | 4 | 0 |
1) Theo đề bài ta có:
\(\dfrac{a}{\dfrac{2}{5}}=\dfrac{b}{\dfrac{3}{4}}=\dfrac{c}{\dfrac{1}{6}}\)
\(\Rightarrow\dfrac{a^2}{\sqrt{\dfrac{2}{5}}}=\dfrac{b^2}{\sqrt{\dfrac{3}{4}}}=\dfrac{c^2}{\sqrt{\dfrac{1}{6}}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a^2}{\sqrt{\dfrac{2}{5}}}=\dfrac{b^2}{\sqrt{\dfrac{3}{4}}}=\dfrac{c^2}{\sqrt{\dfrac{1}{6}}}\)
\(=\dfrac{a^2+b^2+c^2}{\sqrt{\dfrac{2}{5}}+\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{1}{6}}}\)
\(=\dfrac{24309}{1,906...}\)
Đến đây thấy đề sai:v
2) Gọi tuổi của 3 anh em lần lượt là \(a;b;c\)
Theo đề bài ta có:
\(\dfrac{3}{4}a=\dfrac{2}{3}b=\dfrac{1}{2}c\)
\(\Rightarrow\left\{{}\begin{matrix}b=\dfrac{3}{4}a:\dfrac{2}{3}=\dfrac{9}{8}a\\c=\dfrac{3}{4}a:\dfrac{1}{2}=\dfrac{3}{4}a\end{matrix}\right.\)
\(\Rightarrow a+\dfrac{9}{8}a+\dfrac{3}{4}a=58\)
\(\Rightarrow\dfrac{22}{8}a=58\)
\(a=\dfrac{232}{11}\)
cả 2 câu là đề sai hay mk tính sai,chẳng hiểu j
Bài 1:
Ta có:
\(a:b:c=\dfrac{2}{5}:\dfrac{3}{4}:\dfrac{1}{6}\)
\(\Rightarrow\dfrac{a}{\dfrac{2}{5}}=\dfrac{b}{\dfrac{3}{4}}=\dfrac{c}{\dfrac{1}{6}}\Rightarrow\dfrac{a^2}{\dfrac{4}{25}}=\dfrac{b^2}{\dfrac{9}{16}}=\dfrac{c^2}{\dfrac{1}{36}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a^2}{\dfrac{4}{25}}=\dfrac{b^2}{\dfrac{9}{16}}=\dfrac{c^2}{\dfrac{1}{36}}=\dfrac{a^2+b^2+c^2}{\dfrac{4}{25}+\dfrac{9}{16}+\dfrac{1}{36}}\)
\(=\dfrac{24309}{\dfrac{2701}{3600}}=32400\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=5184\\b^2=18225\\c^2=900\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\pm72\\b=\pm135\\c=\pm30\end{matrix}\right.\)
Vậy...........
Chúc bạn học tốt!!!
Bài 2 :
Áp dụng theo dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\left[{}\begin{matrix}\dfrac{x}{7}=2\Rightarrow x=14\\\dfrac{y}{13}=2\Rightarrow y=36\end{matrix}\right.\)
Vậy .................
Bài 3 :
Bạn cũng áp dụng dãy tỉ số bằng nhau là ra nhé :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\)2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.7=14\\y=2.13=26\end{matrix}\right.\)
3)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\rightarrowđpcm\)
1. Tính:
a. \(\dfrac{\text{−1 }}{\text{4 }}+\dfrac{\text{5 }}{\text{6 }}=\dfrac{-3}{12}+\dfrac{10}{12}=\dfrac{7}{12}\)
b. \(\dfrac{\text{5 }}{\text{12 }}+\dfrac{\text{-7 }}{8}=\dfrac{10}{24}+\dfrac{-21}{24}=\dfrac{-11}{24}\)
c. \(\dfrac{-7}{6}+\dfrac{-3}{10}=\dfrac{-35}{30}+\dfrac{-9}{30}=\dfrac{-44}{30}=\dfrac{-22}{15}\)
d.\(\dfrac{-3}{7}+\dfrac{5}{6}=\dfrac{-18}{42}+\dfrac{35}{42}=\dfrac{17}{42}\)
2. Tính :
a. \(\dfrac{2}{14}-\dfrac{5}{2}=\dfrac{2}{14}-\dfrac{35}{14}=\dfrac{-33}{14}\)
b.\(\dfrac{-13}{12}-\dfrac{5}{18}=\dfrac{-39}{36}-\dfrac{10}{36}=\dfrac{49}{36}\)
c.\(\dfrac{-2}{5}-\dfrac{-3}{11}=\dfrac{-2}{5}+\dfrac{3}{11}=\dfrac{-22}{55}+\dfrac{15}{55}=\dfrac{-7}{55}\)
d. \(0,6--1\dfrac{2}{3}=\dfrac{6}{10}--\dfrac{5}{3}=\dfrac{3}{5}+\dfrac{5}{3}=\dfrac{9}{15}+\dfrac{25}{15}=\dfrac{34}{15}\)
3. Tính :
a.\(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-4}{156}+\dfrac{-3}{156}=\dfrac{-7}{156}\)
b.\(\dfrac{-6}{9}-\dfrac{12}{16}=\dfrac{2}{3}-\dfrac{3}{4}=\dfrac{8}{12}-\dfrac{9}{12}=\dfrac{-17}{12}\)
c. \(\dfrac{-3}{7}-\dfrac{-2}{11}=\dfrac{-3}{7}+\dfrac{2}{11}=\dfrac{-33}{77}+\dfrac{14}{77}=\dfrac{-19}{77}\)
d.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{1}+\dfrac{1}{10}\)
\(=\dfrac{10}{10}-\dfrac{1}{10}\)
= \(\dfrac{9}{10}\)
Chế Kazuto Kirikaya thử tham khảo thử đi !!!
Mấy câu trên kia dễ rồi mình chữa mình câu \(c\) bài \(3\) thôi nhé Kazuto Kirikaya
d) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
\(\dfrac{a}{3}=\dfrac{b}{2};\dfrac{b}{6}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a}{9}=\dfrac{b}{6};\dfrac{b}{6}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a}{9}=\dfrac{b}{6}=\dfrac{c}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{9}=\dfrac{b}{6}=\dfrac{c}{5}=\dfrac{a+b+c}{9+6+5}=\dfrac{-40}{20}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}a=-2\cdot9=-18\\b=-2\cdot6=-12\\c=-2\cdot5=-10\end{matrix}\right.\)