Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)
Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)
\(\Rightarrow4x+12=6x\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
Vậy x = 6
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)
\(=\frac{14-5}{8}=\frac{9}{8}\)
+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)
+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)
+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)
Vậy ...
c) \(5^x+5^{x+1}+5^{x+2}=3875\)
\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)
\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)
\(\Rightarrow5^x.31=3875\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
Vậy x = 3

Câu 2:
a) Ta có: \(x^4\ge0\forall x\)
\(3x^2\ge0\)
Do đó: \(x^4+3x^2\ge0\forall x\)
\(\Rightarrow x^4+3x^2+2\ge2\forall x\)
Dấu '=' xảy ra khi
\(x^4+3x^2=0\Leftrightarrow x^2\left(x^2+3\right)=0\)
Vì \(x^2\ge0\forall x\)
nên \(x^2+3\ge3>0\forall x\)
Do đó: \(x^2=0\Leftrightarrow x=0\)
Vậy: GTNN của biểu thức \(A=x^4+3x^2+2\) là 2 khi x=0
b)\(B=\left(x^4+5\right)^2\)
Ta có: \(x^4\ge0\forall x\)
\(\Rightarrow x^4+5\ge5\forall x\)
\(\Rightarrow\left(x^4+5\right)^2\ge25\forall x\)
Dấu '=' xảy ra khi
\(x^4+5=5\Leftrightarrow x^4=0\Leftrightarrow x=0\)
Vậy: GTNN của biểu thức \(B=\left(x^4+5\right)^2\) là 25 khi x=0
c) \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall y\)
Do đó: \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2-2\ge-2\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy: GTNN của biểu thức \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\) là -2 khi x=1 và y=-2
Câu 3:
a) \(A=5-3\left(2x-1\right)^2\)
Ta có: \(A=5-3\left(2x-1\right)^2=-3\left(2x-1\right)^2+5\)
Ta có: \(\left(2x-1\right)^2\ge0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi
\(\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
Vậy: GTLN của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\frac{1}{2}\)
b) \(B=\frac{1}{2\left(x-1\right)^2+3}\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2+3\ge3\forall x\)
\(\Rightarrow\frac{1}{2\left(x-1\right)^2+3}\le\frac{1}{3}\forall x\)
Dấu '=' xảy ra khi
\(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy: GTLN của biểu thức \(B=\frac{1}{2\left(x-1\right)^2+3}\) là \(\frac{1}{3}\) khi x=1
c) \(C=\frac{x^2+8}{x^2+2}\)
Ta có: \(C=\frac{x^2+8}{x^2+2}=\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)
Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+2\ge2\forall x\)
\(\Rightarrow\frac{6}{x^2+2}\le3\forall x\)
\(\Rightarrow1+\frac{6}{x^2+2}\le4\forall x\)
Dấu '=' xảy ra khi
\(x^2=0\Leftrightarrow x=0\)
Vậy: Giá trị lớn nhất của biểu thức \(C=\frac{x^2+8}{x^2+2}\) là 4 khi x=0

b) | 3x - 4 | + | 5y + 5 | = 0
Ta có \(\hept{\begin{cases}\left|3x-4\right|\ge0\\\left|5y+5\right|\ge0\end{cases}\forall xy}\)
\(\Leftrightarrow\left|3x-4\right|+\left|5y+5\right|\ge0\forall xy\)
Do đó để tổng | 3x - 4 | + | 5y + 5 | = 0 thì \(\hept{\begin{cases}\left|3x-4\right|=0\\\left|5y+5\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x-4=0\\5y+5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x=4\\5y=-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=-1\end{cases}}\)
Vậy \(x=\frac{4}{3}\) và y= - 1
c) | x + 3 | + | x + 1 | = 3x (*1)
Ta có \(\hept{\begin{cases}\left|x+3\right|\ge0\\\left|x+1\right|\ge0\end{cases}\forall x}\)
\(\Leftrightarrow\) | x + 3 | + | x + 1 | \(\ge0\forall\)x
\(\Leftrightarrow3x\ge0\forall x\)
\(\Leftrightarrow x\ge0\)
\(\Leftrightarrow x+3>x+1>x\ge0\)
\(\Leftrightarrow\hept{\begin{cases}\left|x+3\right|=x+3\\\left|x+1\right|=x+1\end{cases}}\)
\(\Leftrightarrow\left|x+3\right|+\left|x+1\right|=x+3+x+1\)
\(\Leftrightarrow\left|x+3\right|+\left|x+1\right|=2x+4\) (*2)
Từ (*1) và (*2) <=> 2x + 4 = 3x
\(\Leftrightarrow4=3x-2x\)
\(\Leftrightarrow x=4\)
Vậy x = 4
Câu a t đang nghi sai đề
Lát t lm đc thì lm sau nhé

(x-2)(x+2)=0
<=>\(x^2-2^2=0\)
<=>\(x^2=2^2\)
<=>\(x^2=4\)
=> x = \(\orbr{\begin{cases}2\\-2\end{cases}}\)
(2x-2)(4x+7) = 0
<=> 2x-2 = -4x-7
<=> 2x + 4x = -7-2
<=> 6x = -9
<=> x = \(\frac{-3}{2}\)
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và \(a^2-b^2+2c^2\)=108
Áp dụng tính chất dãy tỉ số bằng nhau ta có ;
\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\)= \(\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}\)= 4
=> a = 2.4 = 8
=> b= 3.4 = 12
=> c = 4.4 =16

Ta có: \(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow f\left(0\right)=c⋮3\Rightarrow c⋮3\)
\(\left\{{}\begin{matrix}f\left(1\right)=a+b+c⋮3\\f\left(-1\right)=a-b+c⋮3\end{matrix}\right.\)
Mà \(c⋮5\)
\(\Rightarrow\left\{{}\begin{matrix}a+b⋮3\\a-b⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a⋮3\\2b⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a⋮3\\b⋮3\end{matrix}\right.\) ( do \(\left(2;3\right)=1\) )
Vậy \(a,b,c⋮3\)

1,
Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)
\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)
\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)
Dấu "=" xảy ra khi x = 0, y = 13
Vậy Pmin = 6/7 khi x = 0, y = 13
2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6
3,
Ta có: \(10\le n\le99\)
\(\Rightarrow20\le2n\le198\)
\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)
\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)
\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)
Ta thấy chỉ có 36 là số chính phương
Vậy n = 32
4,
ÁP dụng TCDTSBN ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy B = 8

Bài 2:
a: =>x-3<=0
=>x<=3
b: TH1: x>=-1/2
=>2x+1+x=4
=>3x+1=4
=>x=1(nhận)
TH2: x<-1/2
=>-2x-1+x=4
=>-x-1=4
=>-x=5
=>x=-5(nhận)
c: =>|x-3|+x-5=0
TH1: x>=3
Pt sẽ là x-3+x-5=0
=>2x-8=0
=>x=4(nhận)
TH2: x<3
Pt sẽ là 3-x+x-5=0
=>-2=0(loại)
mik sẽ tick cho 1 người làm nhanh và đúng nhất
Ta có:
\(\left(\right. a - \frac{1}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. c - 3 \left.\right) = 0\) (1)
Và: \(a + 1 = b + 2 = c + 3\)
\(\Rightarrow a = b + 2 - 1 = b + 1\)
Thay vào (1) ta có:
\(\left(\right. b + 1 - \frac{1}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. c - 3 \left.\right) = 0\)
\(\Rightarrow \left(\right. b + \frac{2}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. c - 3 \left.\right) = 0\) (2)
Mà: \(b + 2 = c + 3\)
\(\Rightarrow c = b + 2 - 3 = b - 1\)
Thay vào (2) ta có:
\(\left(\right. b + \frac{2}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. b - 1 - 3 \left.\right) = 0\)
\(\Rightarrow \left(\right. b + \frac{2}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. b - 4 \left.\right) = 0\)
\(\Rightarrow \left[\right. b = - \frac{2}{3} \\ b = - \frac{1}{2} \\ b = 4\)
TH1 khi b=\(- \frac{2}{3}\)
\(\Rightarrow a = b + 1 = - \frac{2}{3} + 1 = \frac{1}{3}\)
\(\Rightarrow c = b - 1 = - \frac{2}{3} - 1 = - \frac{5}{3}\)
TH2 khi \(b = - \frac{1}{2}\)
\(\Rightarrow a = b + 1 = - \frac{1}{2} + 1 = \frac{1}{2}\)
\(\Rightarrow c = b - 1 = - \frac{1}{2} - 1 = - \frac{3}{2}\)
TH3 khi \(b = 4\)
\(\Rightarrow a = b + 1 = 4 + 1 = 5\)
\(\Rightarrow c = b - 1 = 4 - 1 = 3\)
sai mình xin lỗi