Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:suy ra 5*(44-x)=3*(x-12)
220-5x=3x-36
-5x-3x=-36-220
-8x =-256
x=32
Bài 2 :Đặt a/3=b/4=k
suy ra a=3k ; b=4k
Ta có a*b=48
suy ra 3k*4k=48
12k =48
k=4
suy ra a=3*4=12
b=4*4 =16
Bài 3: áp dụng tính chất dãy số bằng nhau ta được
a+b+c+d/3+5+7+9 = 12/24=0,5
suy ra a=1,5; b=2,5; c=3,5; d=4,
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
\(A=\frac{11}{9}-\frac{7}{8}+-\frac{2}{3}-\frac{1}{8}+\frac{25}{9}-\frac{4}{3}\)
\(A=1\)
\(B=1\frac{3}{4}:\frac{3}{5}-\frac{2}{3}x1,75+\left(\frac{1}{2}\right)^2:\frac{1}{7}\)
\(B=3,5\)
\(\frac{4}{7}\times x=\frac{1}{5}+\frac{2}{3}\)
\(\frac{4}{7}x=\frac{13}{15}\)
\(\Rightarrow x=\frac{91}{60}\)
các bài còn lại tương tự nha
mấy cái này dễ mà toán tìm x này là cơ bản!!
67865785685685785785774677567568568
Bài 1:
a) Ta có: \(6\frac{5}{7}-\left(1\frac{3}{4}+2\frac{5}{7}\right)\)
\(=6\frac{5}{7}-1\frac{3}{4}-2\frac{5}{7}\)
\(=4\frac{5}{7}-1\frac{3}{4}\)
\(=\frac{33}{7}-\frac{7}{4}\)
\(=\frac{132}{28}-\frac{49}{28}=\frac{83}{28}\)
b) Ta có: \(7\frac{5}{9}-\left(2\frac{3}{4}+3\frac{5}{9}\right)\)
\(=7\frac{5}{9}-2\frac{3}{4}-3\frac{5}{9}\)
\(=4\frac{5}{9}-2\frac{3}{4}\)
\(=\frac{41}{9}-\frac{11}{4}\)
\(=\frac{164}{36}-\frac{99}{36}=\frac{65}{36}\)
c) Ta có: \(\frac{-3}{5}\cdot\frac{5}{7}+\frac{-3}{5}\cdot\frac{3}{7}+\frac{-3}{5}\cdot\frac{6}{7}\)
\(=\frac{-3}{5}\cdot\left(\frac{5}{7}+\frac{3}{7}+\frac{6}{7}\right)\)
\(=\frac{-3}{5}\cdot2=-\frac{6}{5}\)
d) Ta có: \(\frac{1}{3}\cdot\frac{4}{5}+\frac{1}{3}\cdot\frac{6}{5}-\frac{4}{3}\)
\(=\frac{1}{3}\cdot\frac{4}{5}+\frac{1}{3}\cdot\frac{6}{5}-\frac{1}{3}\cdot4\)
\(=\frac{1}{3}\left(\frac{4}{5}+\frac{6}{5}-4\right)\)
\(=\frac{1}{3}\cdot\left(-2\right)=\frac{-2}{3}\)