Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-\left(x+3\right)\left(3x+1\right)=\)\(9\)
\(\Leftrightarrow x^2-9-\left(x+3\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x+3\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-3-3x-1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(-2x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\-2x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\-2x=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}}\)
Vậy phương trình có tập nghiệm \(S=\left\{-3;-2\right\}\)
\(x^3+4x+5=0\)
\(\Leftrightarrow\left(x^3+1\right)+\left(4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)+4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\\left(x-\frac{1}{2}\right)^2+\frac{19}{4}=0\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\\left(x-\frac{1}{2}\right)^2=\frac{-19}{4}\left(vn\right)\end{cases}}\)(vn: vô nghiệm).\(\Leftrightarrow x=-1\)
Vậy phương trình có nghiệm duy nhất : \(x=-1\)
a, Xét tam giác ABC và tam giác OMN có
^BAC = ^MON = 900
ACON=BCMN=84=105=2ACON=BCMN=84=105=2
Vậy tam giác ABC ~ tam giác OMN
b, ABOM=BCMN=ACONABOM=BCMN=ACON( tỉ số đồng dạng )
a)
Tính AB:
AB2 = BC2 + AC2
AB2 = 164
AB = \(\sqrt{164}\)= 12,8
Tính OM
OM2 = MN2 + ON2
OM2 = 41
OM = \(\sqrt{41}\)= 6,4
b)
Xét \(\Delta ABC\)và \(\Delta OMN\):
\(\widehat{A}\)= \(\widehat{O}\)= 90o
\(\frac{BC}{MN}\)= \(\frac{AC}{ON}\)= 2
\(\Rightarrow\) \(\Delta ABC\)~ \(\Delta OMN\) \(\Leftrightarrow\) \(\frac{AB}{OM}\)= \(\frac{BC}{MN}\)= \(\frac{AC}{ON}\)= 2
Bài 1 :
a, \(A=\frac{4x^2}{4-x^2}+\frac{2+x}{2-x}-\frac{2-x}{x+2}\)ĐK : \(x\ne\pm2\)
\(=\frac{4x^2+\left(2+x\right)^2-\left(2-x\right)^2}{\left(2-x\right)\left(x+2\right)}=\frac{4x^2+x^2+4x+4-\left(x^2-4x+4\right)}{\left(2-x\right)\left(x+2\right)}\)
\(=\frac{5x^2+4x+4-x^2+4x-4}{\left(2-x\right)\left(x+2\right)}=\frac{4x^2+8x}{\left(2-x\right)\left(x+2\right)}=\frac{4x\left(x+2\right)}{\left(2-x\right)\left(x+2\right)}=\frac{4x}{2-x}\)
b, Ta có P = A : B hay \(\frac{4x}{2-x}.\frac{x\left(2-x\right)}{x-3}=\frac{4x^2}{x-3}< 0\)
\(\Rightarrow x-3< 0\)do \(4x^2\ge0\forall x\)
\(\Leftrightarrow x< 3\)
Kết hợp với giả thiết ta có : \(x< 3;x\ne\pm2\)
quên mất, Với P = -1 hay \(\frac{4x^2}{x-3}=-1\Rightarrow4x^2=-x+3\Leftrightarrow4x^2+x-3=0\)
\(\Leftrightarrow4x^2+4x-3x-3=0\Leftrightarrow4x\left(x+1\right)-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(4x-3\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-1\end{cases}}\)
Vậy với P = -1 thì x = -1 ; x = 3/4
Bài 2 :
a, \(A=\left(\frac{3-x}{x+3}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)ĐK : \(x\ne\pm3\)
\(=\left(-1+\frac{x}{x+3}\right).\frac{x+3}{3x^2}=\left(\frac{-3}{x+3}\right).\frac{x+3}{3x^2}=\frac{-1}{x^2}\)
b, Ta có : \(x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
TH1 : Thay x = 1 vào biểu thức trên ta được : \(\frac{-1}{1}=-1\)tương tự với 1
TH2 : ...
c, Ta có : A < -1 hay \(\frac{-1}{x^2}< 1\Leftrightarrow\frac{-1}{x^2}-1< 0\Leftrightarrow\frac{-1-x^2}{x^2}< 0\)
\(\Rightarrow-\left(x^2+1\right)< 0\)do \(x^2\ge0\forall x\)
\(\Leftrightarrow x^2< -1\)( vô lí )
Vậy ko có giá trị x thỏa mãn A < -1
d, Ta có : \(A=\frac{x}{8}\)hay \(-\frac{1}{x^2}=\frac{x}{8}\Rightarrow x^3=-8\Leftrightarrow x=-2\)
Vậy với A = x/8 thì x = -2
a, Ta có : AM là đường phân giác ; CN là đường phân giác
mà tam giác ABC cân
=> AM ; CN là đường trung trực
=> \(BM=MC=\frac{BC}{2}\)=> M là trung điểm
=> \(AN=NB=\frac{AB}{2}\)=> N là trung điểm
Vì M là trung điểm ; N là trung điểm => MN là đường trung bình tam giác ABC
=> MN // AC ; MN = 1/2 AC
b, Vì tam giác ABC cân tại A => AB = AC = 5
=> MN = 1/2 . AC = 1/2 . 5 = 5/2 cm