Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
a) Ta có:
\(\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b(5k+3)}{b(5k-3)}=\frac{5k+3}{5k-3}\)
\(\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d(5k+3)}{d(5k-3)}=\frac{5k+3}{5k-3}\)
\(\Rightarrow \frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) (đpcm)
b)
\(\frac{2a-b}{2a+b}=\frac{2bk-b}{2bk+b}=\frac{b(2k-1)}{bb(2k+1)}=\frac{2k-1}{2k+1}\)
\(\frac{2c-d}{2c+d}=\frac{2dk-d}{2dk+d}=\frac{d(2k-1)}{d(2k+1)}=\frac{2k-1}{2k+1}\)
\(\Rightarrow \frac{2a-b}{2a+b}=\frac{2c-d}{2c+d}\) (đpcm)
a/ Ta có \(a\left(2a-5c\right)=2a^2-5ac=2bc-5ac=c\left(2b-5a\right)\Rightarrow\frac{c}{2a-5c}=\frac{a}{2b-5a}\)
Các câu khác làm tương tự
CÁC BÀI NÀY ĐỀU GIẢI THEO TÍNH CHẤT DÃY TỈ SỐ BẮNG NHAU
a) ta có: 2a = 3b; 5b = 7c
\(\Rightarrow\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}\left(1\right);\frac{b}{14}=\frac{c}{10}\left(2\right)\)
VẾ (1) nhân cả 2 số với\(\frac{1}{7}\); VẾ (2) nhân cả hai số với \(\frac{1}{2}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAU, TA CÓ:
\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)
PHẦN SAU TỰ LÀM^-^
c) ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{a}{3}=\frac{b+1}{4}=\frac{c+2}{5}=\frac{a-b-1+c+2}{3-4+5}=\frac{a-b+c+1}{4}=\frac{-17}{4}\)
PHẦN SAU TỰ LÀM^-^
Theo bài ra, ta có: \(2a=3b=5c\) \(\left(1\right)\)
Và: \(2a-3b+c=6\)
Có: \(2a=3b\) \(\Rightarrow3b-3b+c=6\)
\(\Rightarrow c=6\)
Thay \(c=6\) vào \(\left(1\right)\), ta được: \(2a=3b=30\)
\(\Rightarrow a=15;b=10\)
Vậy \(a=15;b=10;c=6\)