Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\) \(\Rightarrow a;b;c< 1\)
Xét \(a\ne b\ne c\) thì rõ ràng ta thấy không có giá trị tự nhiên thõa mãn cho a ; b ;c.
Xét \(a=b=c\) thì ta lại có 3 TH :
TH1: \(a=b=c=2\), thế vào biểu thức ta có:
\(\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}>1\) (loại)
TH2: \(a=b=c=3\), thế vào biểu thức ta có:
\(\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}=1\) (đúng)
TH3: \(a=b=c< 3\)
Thì \(\dfrac{1}{a+q}+\dfrac{1}{b+q}+\dfrac{1}{c+q}>\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}=1\)(loại)
Vậy \(a=b=c=3\)
Không biết có đúng không nữa
Đặt \(\dfrac{a}{b^2}=\dfrac{b^2}{c^3}=\dfrac{c^3}{a^4}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=k.b^2\\b^2=k.c^3\\c^3=k.a^4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=k.k.c^3=k^2c^3\\c^3=k.a^4\end{matrix}\right.\)
\(\Rightarrow a=k^2.k.a^4\)
\(\Rightarrow a=k^3a^4\)
\(\Rightarrow\left(ka\right)^3=1\)
\(\Rightarrow ka=1\)
\(\Rightarrow a=\dfrac{1}{k}\) (1)
Thế vào \(c^3=k.a^4\Rightarrow c^3=k.\dfrac{1}{k^4}=\dfrac{1}{k^3}\)
\(\Rightarrow c=\dfrac{1}{k}\) (2)
Thế vào \(b^2=kc^3\Rightarrow b^2=k.\dfrac{1}{k^3}=\dfrac{1}{k^2}\)
\(\Rightarrow b=\dfrac{1}{k}\) hoặc \(b=-\dfrac{1}{k}\) (3)
(1);(2);(3) \(\Rightarrow\left[{}\begin{matrix}a=b=c\\a=c=-b\end{matrix}\right.\)
TH1: \(a=b=c\)
\(\Rightarrow P=\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)=2.2.2=8\)
Th2: \(a=c=-b\)
\(\Rightarrow P=\left(1+\dfrac{-b}{b}\right)\left(1+\dfrac{b}{-b}\right)\left(1+\dfrac{-b}{-b}\right)=0.0.2=0\)
\(a,-\dfrac{3}{5}-x=-0,75\\ -\dfrac{3}{5}-x=-\dfrac{3}{4}\\ x=-\dfrac{3}{5}-\left(-\dfrac{3}{4}\right)\\ x=-\dfrac{3}{5}+\dfrac{3}{4}=\dfrac{3}{20}\\ ---\\ b,1\dfrac{4}{5}=-0,15-x\\ \dfrac{9}{5}=-\dfrac{3}{20}-x\\ x=-\dfrac{3}{20}-\dfrac{9}{5}\\ x=-\dfrac{3}{20}-\dfrac{36}{20}\\ x=-\dfrac{39}{20}\\ ----\\ c,2\dfrac{1}{2}-x+\dfrac{4}{5}=\dfrac{2}{3}-\left(-\dfrac{4}{7}\right)\\ \dfrac{5}{2}-x+\dfrac{4}{5}=\dfrac{2}{3}+\dfrac{4}{7}\\ \dfrac{33}{10}-x=\dfrac{26}{21}\\ x=\dfrac{33}{10}-\dfrac{26}{21}\\ x=\dfrac{433}{210}\)
a) Ta có: \(a\left(-\dfrac{3}{2}\right)+a\cdot\dfrac{1}{4}-a\cdot\dfrac{5}{6}\)
\(=a\left(-\dfrac{3}{2}+\dfrac{1}{4}-\dfrac{5}{6}\right)\)
\(=a\left(\dfrac{-18}{12}+\dfrac{3}{12}-\dfrac{10}{12}\right)\)
\(=a\cdot\dfrac{-25}{12}\)(1)
Thay \(a=\dfrac{3}{5}\) vào biểu thức (1), ta được:
\(\dfrac{3}{5}\cdot\dfrac{-25}{12}=\dfrac{-75}{60}=\dfrac{-5}{4}\)
a: \(A=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2022\cdot2024}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2022}-\dfrac{1}{2024}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{1011}{2024}=\dfrac{1011}{4848}< \dfrac{1}{4}\)
b: \(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2013\cdot2015}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2014}{2015}=\dfrac{1007}{2015}< \dfrac{1}{2}\)