
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(5x\left(x-1\right)=x-1\)
\(\Leftrightarrow5x^2-5x=x-1\)
\(\Leftrightarrow5x^2-5x-x+1=0\)
\(\Leftrightarrow5x^2-6x+1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-\frac{1}{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-\frac{1}{5}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)
\(2\left(x-7\right)-x^2+7x=0\)
\(2\left(x-7\right)-x\left(x-7\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2-x=0\\x-7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}\)

a) trong tam giác ADB có ADC là góc ngoài tại đỉnh D
=>góc ADC = góc BAD + góc ABD
mà góc BAD = góc DBE
=>góc ADC = góc ABD + góc DBE
=>góc ADB = góc ABE
Xét tam giác ADC va tam giác ABE
Góc BAD = góc CAD(AD là p/g tại đỉnh A)
góc ABE = góc ADC(cmt)
=> tam giác ABE đồng dạng với tam giác ADC(g.g)
1b) Xét tam giac AEB và tam giác BED
góc E chung
góc DBE = góc DAB(gt)
=>tam giác ABE đồng dạng vói tam giác BDE(g.g)
=>BE/DE = AE/BE
=>BE.BE=DE.AE
hayBE^2=DE.AE

Loại toán này nếu nắm được cách thì đơn giản lắm! Bạn chỉ cần thay tất cả số 1999 thành abc rồi rút gọn thôi!
\(\frac{1999a}{ab+1999a+1999}+\frac{b}{bc+b+1999}+\frac{c}{ac+c+1}\)
Mk thay rồi rút gọn luôn nha
\(=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)
\(=\frac{ac+c+1}{ac+c+1}=1\)
Nếu đề bài là abc=1 thì bạn giữ lại một trong 3 đừng thay số rồi làm như trên là OK

Giải :
a2 + b2 + c2 = ab + ac + bc
\(\Rightarrow\)2a2 + 2b2 + 2c2 = 2ab + 2ac + 2bc
\(\Rightarrow\)2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
\(\Rightarrow\)( a2 - 2ab + b2 ) + ( a2 - 2ac + c2 ) + ( b2 - 2bc + c2 ) = 0
\(\Rightarrow\)( a - b )2 + ( a - c )2 + ( b - c )2 = 0
Vì ( a - b )2 \(\ge\)0 với mọi a , b ; ( a - c )2 \(\ge\)với mọi a , c ; ( b - c )2 \(\ge\)0 với mọi b , c
Do đó ( a - b )2 + ( a - c )2 + ( b - c )2 = 0 khi a - b = a - c = b - c = 0
\(\Rightarrow\)a = b = c
ta có \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\)
tương tự ta có
\(b^2+c^2\ge2bc;c^2+a^2\ge2ac\)
cộng từng vế của 3 bđt cùng chiều ta có
\(a^2+b^2+c^2\ge ab+bc+ca\)
dấu = xảy ra <=> a=b=c(ĐPCM)