\(\left(x^4-9x^3+21x^2ẫx+b\right)\)chia hết \(\left(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2022

\(\Leftrightarrow x^4-9x^3+21x^2+x+k⋮x^2+x+2\)

\(\Leftrightarrow x^4+x^3+2x^2-10x^3-10x^2-20x+29x^2+29x+58-8x+k-58⋮x^2+x+2\)

=>-8x+k-58=0

=>k=8x+58

6 tháng 8 2019

P/s: hình như sai tí đấy bạn, đa thức ở dưới phải là \(g\left(x\right)=x^2-x-2\)

Ta có: \(x^2-x-2=\left(x-2\right)\left(x+1\right)\)

Như vậy nếu f(x)chia hết cho \(x^2-x-2,\)thì cũng chia hết cho (x-2)(x+1) . Áp dụng định lí Bezout và định nghĩa phép chia hết, ta thay x=-1 vào  \(f\left(x\right):f\left(-1\right)=1+19+21-1+k=0\Rightarrow k=-30\)

7 tháng 8 2019

Bổ sung cách 1 cho Khả Tâm

Lấy \(\frac{f(x)}{g(x)}\)để tìm số dư và đạt số dư bằng 0 để tìm k.

Ta có : \(x^4-9x^3+21x^2+x+k=\left[x^2-x-2\right]\left[x^2-8x+15\right]+k+30\)

\(f(x)⋮g(x)\)thì cần và đủ là : \(r(x)=k+30=0\Rightarrow k=-30\)

1 tháng 8 2018

a) \(5x\left(3x-7\right)-15x\left(x-1\right)=3\)

\(\Rightarrow15x^2-35x-15x^2+15x=3\)

\(\Rightarrow-20x=3\)

\(\Rightarrow x=-\dfrac{3}{20}\)

b) \(\left(4x+2\right)\left(6x-3\right)-\left(8x+5\right)\left(3x-4\right)=2\)

\(\Rightarrow24x^2+12x-12x-6-24x^2-15x+24x+20=2\)

\(\Rightarrow9x+14=2\)

\(\Rightarrow9x=-12\)

\(\Rightarrow x=-\dfrac{4}{3}\)

c) \(7x^2-21x=0\)

\(\Rightarrow7x\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}7x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

d) \(9x^2-6x+1=0\)

\(\Rightarrow\left(3x\right)^2-2.3x+1=0\)

\(\Rightarrow\left(3x-1\right)^2=0\)

\(\Rightarrow3x-1=0\)

\(\Rightarrow3x=1\)

\(\Rightarrow x=\dfrac{1}{3}\)

e) \(16x^2-49=0\)

\(\Rightarrow\left(4x\right)^2-7^2=0\)

\(\Rightarrow\left(4x-7\right)\left(4x+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}4x-7=0\\4x+7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}4x=7\\4x=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{4}\\x=-\dfrac{7}{4}\end{matrix}\right.\)

f) \(5x^3-20x=0\)

\(\Rightarrow5x\left(x^2-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}5x=0\\x^2-4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x^2=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=2\\x=-2\end{matrix}\right.\)

a: \(=3x^2+3x-x-1\)

=(x+1)(3x-1)

b: \(=x^3+x^2+5x^2+5x+6x+6\)

\(=\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left(x+2\right)\cdot\left(x+3\right)\)

c: \(=x^4+3x^2-x^2-3\)

\(=\left(x^2+3\right)\left(x^2-1\right)\)

\(=\left(x^2+3\right)\left(x-1\right)\left(x+1\right)\)

f: \(=5x\left(x^2+3x+2\right)\)

=5x(x+1)(x+2)

18 tháng 1 2017

Bài 2 thay 2 vào x rồi giải bình thường tìm k