Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{a}{5}=\frac{b}{6}=\frac{c}{7}=k\)
\(\Rightarrow\hept{\begin{cases}a=5k\\b=6k\\c=7k\end{cases}}\)
\(\Rightarrow ab=5k\cdot6k=30k^2\)
\(\Rightarrow30k^2=3000\)
\(\Rightarrow k^2=100\)
\(\Rightarrow k=\pm10\)
\(k=10\Rightarrow\hept{\begin{cases}a=5\cdot10=50\\b=6\cdot10=60\\c=7\cdot10=70\end{cases}}\)
b, \(\frac{a}{5}=\frac{b}{6}=\frac{c}{7}\)
\(\Rightarrow\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)
\(\Rightarrow\frac{a^2-b^2+c^2}{25-36+49}=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)
\(\Rightarrow\frac{152}{38}=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)
\(\Rightarrow4=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)
\(\Rightarrow\hept{\begin{cases}a^2=4\cdot25=100\\b^2=4\cdot36=144\\c^2=4\cdot49=196\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=\pm10\\b=\pm12\\c=\pm14\end{cases}}\)
Nguyễn Châu Tuấn Kiệt ông có thể giúp tui bài này đc ko
\(\left(3x-1\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)
\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)
Bài 1
a) \(\frac{5}{6}=\frac{x-1}{x}\)
<=> 5x=6x-6
<=> 5x-6x=-6
<=> -11x=-6
<=> \(x=\frac{6}{11}\)
b)c)d) nhân chéo làm tương tự
a) Để A nhận giá trị nguyên thì: \(-n-7⋮n-2\)
\(\Rightarrow-n-7+n-2⋮n-2\)
\(\Rightarrow-9⋮n-2\Rightarrow n-2\inƯ\left(-9\right)\)
Mà \(Ư\left(-9\right)=\left\{-1;-9;1;9\right\}\)
\(\Rightarrow n-2\in\left\{-1;-9;1;9\right\}\)
\(\Rightarrow n\in\left\{1;-7;3;11\right\}\)
b) Để B có giá trị nguyên thì :\(n-6⋮n+5\)
\(\Rightarrow n-6-\left(n+5\right)⋮n+5\)
\(\Rightarrow n-6-n-5⋮n+5\)
\(\Rightarrow-11⋮n+5\Rightarrow n+5\inƯ\left(-11\right)\)
Mà \(Ư\left(-11\right)=\left\{-11;-1;1;11\right\}\)
\(\Rightarrow n+5\in\left\{-1;-11;1;11\right\}\)
\(\Rightarrow n\in\left\{-6;-16;-4;6\right\}\)
(Mấy dạng này bạn cứ làm sao để bỏ n là được)
Đáp án cần chọn là: D
Vì vế trái chia hết cho 3, nhưng vế phải không chia hết cho 3. Nên không tồn tại cặp số nguyên (a,b) thỏa mãn bài toán