K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2022

xin lỗi vì chửi hưi quá miệng hahaha

AH
Akai Haruma
Giáo viên
7 tháng 9

a/ 

Đặt $\frac{a-1}{2}=\frac{b-2}{3}=\frac{c-3}{4}=k$

$\Rightarrow a=2k+1; b=3k+2; c=4k+3$

Khi đó:

$3a+3b-c=50$

$\Rightarrow 3(2k+1)+3(3k+2)-(4k+3)=50$

$\Rightarrow 11k+6=50$

$\Rightarrow 11k=44\Rightarrow k=4$

Ta có:

$a=2k+1=2.4+1=9$

$b=3k+2=3.4+2=14$

$c=4k+3=4.4+3=19$

AH
Akai Haruma
Giáo viên
7 tháng 9

b/

$2a=3b; 5b=7c\Rightarrow \frac{a}{3}=\frac{b}{2}; \frac{b}{7}=\frac{c}{5}$

$\Rightarrow \frac{a}{21}=\frac{b}{14}=\frac{c}{10}$

Áp dụng TCDTSBN:

$\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{45}{15}=3$

$\Rightarrow a=21.3=63; b=14.3=42; c=10.3=30$

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

b)

Ta có :

\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)

\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)

\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)

\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)

\(\Rightarrow M>\frac{x+y+z+t}{x+y+z+t}=1\)

Lại có :

\(x< x+y+z\Rightarrow\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

Tương tự, ta có 

\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)

\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)

\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)

\(\Rightarrow M< \frac{2\times\left(x+y+z+t\right)}{x+y+z+t}=2\)

\(\Rightarrow1< M< 2\)

\(\Rightarrow M\)không là số tự nhiên

k cho mình nha nha nha

23 tháng 7 2015

ta có \(\frac{a-1}{2}=\frac{b-2}{3}=\frac{c-3}{4}\Leftrightarrow\frac{2a-2}{4}=\frac{3b-6}{9}=\frac{c-3}{4}=\frac{2a-2+3b-6-c+3}{4+9-4}\)

         \(=\frac{\left(2a+3b-c\right)-\left(2+6-3\right)}{4+9-4}=\frac{50-5}{9}=\frac{45}{9}=5\)

                           \(\frac{2a-2}{4}=5\Rightarrow a=\frac{4.5+2}{2}=11\)

                          \(\frac{3b-6}{9}=5\Rightarrow b=\frac{5.9+6}{3}=17\)

                          \(\frac{c-3}{4}=5\Rightarrow c=5.4+3=23\)